
OAuth Security Concerns and Implications for
the Model Context Protocol (MCP)

Abstract

OAuth 2.0 is the de facto standard for delegated authorization on the web, but it was not designed with
the fine-grained control and multi-system context of modern AI integrations in mind. This paper
examines OAuth’s security limitations – including coarse-grained permission scopes, an all-or-nothing
user consent model, token theft vulnerabilities, and inconsistent implementations – and analyzes how
these issues pose significant risks to the Model Context Protocol (MCP) used in AI systems. MCP
enables AI models to interface with multiple tools and data sources, so any weakness in OAuth-based
authentication can be amplified across systems. We provide a detailed overview of OAuth’s known
shortcomings (such as overly broad scopes and lack of selective authorization), then discuss how these
weaknesses could lead to privilege escalation, cross-system exploits, and compliance challenges in an
MCP deployment. Real-world incidents are presented to illustrate OAuth’s vulnerabilities – from stolen
GitHub OAuth tokens leading to source code breaches, to a Google OAuth phishing worm that spread
via rogue permissions. The analysis highlights that without addressing OAuth’s limitations, integrating
AI models via MCP could expose organizations to severe security risks. We conclude by underscoring
the urgency of recognizing and mitigating these OAuth-related issues in AI contexts, given their
potential impact on sensitive, interconnected systems.

Introduction

OAuth 2.0 is widely used to grant applications limited access to user data on other services without
sharing passwords. For example, logging in with Google or connecting a third-party app to a cloud
service typically relies on OAuth’s token-based authorization. While OAuth has enabled a rich ecosystem
of integrations, its security model has known limitations that can be problematic in advanced use cases.
One emerging use case is the Model Context Protocol (MCP) – a standard for connecting AI models
(such as large language model assistants) to external data sources, tools, and services. MCP can be
thought of as a “universal connector” that lets AI systems interface with multiple environments in a
secure and standardized way . In practice, an AI using MCP may need to access various platforms
(e.g. code repositories, databases, cloud APIs) on a user’s behalf. This raises the question: How well do
OAuth’s security provisions hold up when an AI agent is granted broad OAuth tokens across
numerous systems?

This paper explores the security concerns of OAuth in depth and examines their impact on MCP-based
AI integrations. The goal is to inform cybersecurity and technical professionals about the inherent risks
– not to propose new solutions, but to highlight why existing weaknesses in OAuth could undermine the
security of AI systems that rely on it. We begin by outlining OAuth’s fundamental limitations in
permission granularity, selective authorization, token security, and inconsistent implementation. Next,
we analyze how these issues could translate into concrete threats in the MCP context, where an AI
model’s OAuth credentials to multiple services could be misused. We then discuss real-world cases that
exemplify these vulnerabilities, such as breaches stemming from OAuth token theft and OAuth consent
abuse. Finally, we conclude with reflections on why these risks are especially severe for AI-driven

1

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://www.anthropic.com/news/model-context-protocol#:~:text=Model%20Context%20Protocol

systems using MCP, emphasizing the need for heightened awareness and mitigations when adopting
OAuth in such contexts.

OAuth’s Security Limitations

Coarse-Grained Permissions and Static Scopes

A well-known limitation of OAuth is its coarse-grained permission model. OAuth access tokens carry
scopes that define what an application can do, but these scopes are often broad and inflexible. In many
implementations, a single scope can grant sweeping access to a user’s resources. For instance, GitHub’s
classic OAuth scope repo “grants full access to read and write everything” in all of a user’s
repositories . This means if an application requests the repo scope, it gains complete control over
all private and public repos of the user – far beyond any minimal necessity for a specific task. In fact,
GitHub acknowledged that its legacy personal access tokens, which use coarse scopes, effectively had
access to everything the user could access, and could last indefinitely . Such broad scopes violate the
principle of least privilege: an app may only need to read one repository or perform a single action, yet
the token allows far more.

Compounding this issue is the static nature of OAuth scopes. Permissions are typically decided at the
moment of user consent and remain unchanged for the lifetime of the token. There is no built-in
mechanism for dynamically narrowing permissions once granted. If an application integrated via OAuth
needs additional permissions later, it often must request a new token with expanded scopes, since
tokens can’t easily be modified or restricted on the fly. This static, “all-or-nothing” consent model
forces users to either grant the full set of requested permissions or deny the integration entirely .
Users cannot selectively approve only certain permissions while withholding others – traditional OAuth
consent screens do not offer granular checkboxes for each scope. (Notably, providers like Google are
only recently moving toward consent unbundling to allow more fine-grained approval of scopes ,
highlighting that the earlier OAuth model was indeed all-or-nothing.)

The result of coarse, static scopes is an over-privileged token in many cases. Once an OAuth token is
issued, it often includes more privileges than needed, and these privileges persist until the token is
revoked or expires. Fine-grained authorization – e.g., granting access to only a specific file or a single
function – is generally not natively supported by OAuth 2.0’s scope design . Attempts to use OAuth
scopes for detailed authorization run into practical limits: defining extremely narrow scopes for every
resource becomes impractical, and tokens (especially JWTs) can only carry so much scope information
without hitting size limits . In summary, OAuth trades granularity for simplicity, which can leave
integrations with far more access than is safe.

Lack of Selective or Contextual Authorization

OAuth’s coarse scopes lead directly to a lack of selective authorization options for end-users. When a
user is presented with an OAuth consent dialog, they must grant all requested permissions in bulk.
There is typically no way to approve some permissions but not others. As a result, the user’s control is
binary – they authorize the application with a broad set of powers, or they cancel the process. This lack
of nuance can be dangerous. A user may trust an app to do one thing but not another, yet OAuth
doesn’t let them finely distinguish those during consent. For example, an app might request access to
both a user’s Google Calendar and Gmail. The user could be comfortable sharing their Calendar but not
their email. However, under a standard OAuth prompt, the user cannot selectively allow just the
calendar scope; it’s an all-or-nothing consent screen . This pressure to over-consent can lead to
users unknowingly granting more access than intended.

2

3

4

4

5

6 7

4

2

https://stackoverflow.com/questions/74314624/github-oauth-apps-whats-the-most-granular-scope-to-get-access-to-pull-requests#:~:text=I%27m%20reading%20the%20documentation%20on,repos%2C%20without%20providing%20write%20access
https://stackoverflow.com/questions/63906613/minimal-set-of-scopes-to-push-to-github-using-an-access-token#:~:text=,has%20access%20to%2C%20in%20perpetuity
https://web.swipeinsight.app/posts/consent-unbundling-for-oauth-user-authentication-in-google-cloud-apis-14891#:~:text=Consent%20unbundling%20allows%20users%20to,while%20older%20projects%20do%20not
https://web.swipeinsight.app/posts/consent-unbundling-for-oauth-user-authentication-in-google-cloud-apis-14891#:~:text=Consent%20unbundling%20allows%20users%20to,while%20older%20projects%20do%20not
https://www.aserto.com/blog/scopes-vs-permissions-authorization#:~:text=2
https://www.aserto.com/blog/scopes-vs-permissions-authorization#:~:text=1
https://www.aserto.com/blog/scopes-vs-permissions-authorization#:~:text=OAuth%20scopes%20can%20designate%20general,you%20cannot%20get%20using%20scopes
https://web.swipeinsight.app/posts/consent-unbundling-for-oauth-user-authentication-in-google-cloud-apis-14891#:~:text=Consent%20unbundling%20allows%20users%20to,while%20older%20projects%20do%20not

Moreover, OAuth lacks context-aware or selective activation of permissions. Once an app is authorized,
every action it takes with the token is equally permitted. The protocol does not natively account for
context such as “only allow this action if it’s during business hours” or “only allow read access unless a
higher privilege is specifically needed.” It’s up to the application or API to implement any such logic,
which many do not. OAuth also has limited support for incremental authorization (asking for more
permissions later) – some providers support it, but it’s not a universal feature. Therefore, applications
often request the maximum scopes up front “just in case,” leading to over-broad initial grants. There is
also typically no partial revocation of scopes: if a user or admin wants to revoke one permission, they
often must revoke the entire token, cutting off all access until a new token with a reduced scope is
issued. This was identified as a major shortcoming of JWT-based access tokens – privileges remain until
the token expires, even if an admin changes the user’s rights in the meantime . In practice, OAuth
tokens act like coarse session credentials that are difficult to rein in once unleashed.

Token Theft and Exposure Risks

OAuth’s security also hinges on the secrecy of the access token. Bearer tokens (which OAuth uses by
default) are like passwords: anyone who possesses the token can use it to access the associated
resources, until it expires or is revoked. This makes OAuth tokens a high-value target for attackers. If
tokens are stolen – through malware on a user’s machine, a leak from an app’s database, or a
vulnerability in a third-party integrator – an attacker can impersonate the legitimate application or user.
Unlike passwords, users are not prompted when tokens are used, so theft can go unnoticed until
damage is done. A striking real-world example occurred in April 2022, when GitHub discovered that
attackers had stolen OAuth tokens issued to two third-party apps (Heroku and Travis CI) and
abused them to access data from dozens of organizations’ private GitHub repositories . Because
those tokens carried broad repo permissions, the attackers were able to download source code from
private repos en masse. GitHub’s analysis noted the threat actors likely mined these repositories for
secrets (like API keys) to pivot into other systems – a classic “breach upon breach” scenario enabled
by a single OAuth token compromise.

Illustration of a compromised OAuth supply chain: an attacker steals the OAuth token from a third-party
integrator (e.g., a Heroku GitHub app) and uses it to retrieve private repository data from GitHub . In the
2022 GitHub incident, the stolen tokens effectively granted the attackers the same privileges the
legitimate apps had. GitHub confirmed that these compromised tokens were used to clone private
repositories from dozens of victim organizations . This incident highlights how OAuth tokens, if

8

9

10

11

12

3

https://www.aserto.com/blog/scopes-vs-permissions-authorization#:~:text=Perhaps%20the%20biggest%20disadvantage%20of,most%20organizations%20simply%20cannot%20afford
https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/#:~:text=Looking%20across%20the%20entire%20GitHub,to%20pivot%20into%20other%20infrastructure
https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/#:~:text=applications%20were%20stolen%20and%20abused,to%20pivot%20into%20other%20infrastructure
https://blog.gitguardian.com/how-hackers-used-stolen-github-oauth-tokens/#:~:text=Currently%2C%20a%20supply%20chain%20attack,downloaded%20by%20the%20unknown%20actor
https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/#:~:text=compromised%20OAuth%20user%20tokens%20from,actors%20may%20be%20mining%20the

not adequately protected, can become a single point of failure: one token in the wrong hands led to a
supply-chain breach across many companies. The risk of token theft is exacerbated by inconsistent
security practices in storing and handling tokens. Developers may inadvertently log tokens, or store
them in plain text in databases, or not deploy proper TLS/certificate pinning – any of which could
expose tokens to interception. Additionally, long-lived refresh tokens (used to get new access tokens)
present another attractive target. If an attacker gains a refresh token, they can continue to mint new
access tokens even after the old ones expire, extending the window of compromise.

Beyond outright theft, OAuth tokens can be abused in other ways. Phishing attacks may trick users into
authorizing a malicious app, effectively giving the attacker a token with the user’s consent. This
technique bypasses the need to steal credentials – the user willingly clicks “Allow” on a fraudulent OAuth
consent screen. A notorious example is the Google Docs OAuth worm of 2017. In that campaign,
attackers created a fake app named “Google Docs” and distributed consent requests that appeared to
come from a trusted contact . Users who approved the request unknowingly granted the fake
app permission to “Read, send, delete, and manage” their Gmail, as well as manage their contacts. The
app then used those privileges to self-propagate – reading the victim’s contacts and emailing itself to
them – and to potentially access the victim’s email data. Crucially, this OAuth-based attack did not
require the user’s Google password or bypass any two-factor authentication, since the user
voluntarily authorized the access token . It demonstrates that token misuse can be as dangerous as
token theft. In both cases, OAuth’s design means the authorization server will accept the token as proof
of delegated rights, with no native way to distinguish malicious use from legitimate use of a stolen or
fraudulently obtained token.

Implementation Inconsistencies and Platform Variations

Another security concern with OAuth is the inconsistency of implementations across different
providers and applications. OAuth 2.0 is a framework with flexibility, which has led to variations in how
it’s implemented and extended. Not all OAuth providers support the same set of features or enforce the
same security measures. For example, some providers may not strictly validate redirect URIs or may
allow wildcard callbacks, leading to open redirect vulnerabilities. Others might skip implementing PKCE
(Proof Key for Code Exchange) in certain flows, making public clients vulnerable to authorization code
interception. Additionally, the definition and granularity of scopes vary widely. Google’s OAuth scopes
are very granular for some services and very broad for others (e.g., a single scope like https://
www.googleapis.com/auth/cloud-platform grants access to all Google Cloud services under a
user’s account). In contrast, some services have only a few coarse scopes because their API doesn’t
support finer segmentation. This inconsistency makes it hard to adopt a uniform least-privilege strategy
across all integrations.

In some cases, OAuth’s flexibility has led to logic flaws when multiple identity providers or apps are
involved. A recent security report (2025) detailed an OAuth flaw where an access token issued for one
application could be reused to access another application from the same provider under certain
misconfigurations . Essentially, if two apps trust the same identity provider (say, Google) and the
identity provider does not properly bind tokens to the intended audience, an attacker could take a
token granted to App B and present it to App A to gain unauthorized access. This kind of
implementation mistake – not mandating a token audience or client check – is not part of the core
OAuth spec but is a recommended best practice. When implementers diverge from best practices,
vulnerabilities like OAuth token “mix-up” or confused deputy problems can arise. The result is that the
security of OAuth in practice is only as strong as the weakest link among the various implementations.
An organization might use multiple OAuth-backed integrations (Google, GitHub, Slack, etc.), and each
may have different default behaviors, timeout durations, or token formats. This patchwork can lead to
unforeseen gaps.

13 14

15

16

4

https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=This%20attack%20started%20with%20a,a%20document%20via%20Google%20Docs
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=,mitigating%20strong%20passwords%20or%20two
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=email%20pretext%20and%20appears%20legitimate,factor%20authentication%20%282FA
https://medium.com/@rahulgairola/one-token-two-apps-the-oauth-flaw-that-can-compromise-your-accounts-a-silent-security-disaster-31cff04dcceb#:~:text=making%20%E2%80%9CLogin%20with%20Google%E2%80%9D%20,step%20reproduce%20steps

For instance, consider the process of revoking access. There’s no single standard for how a token can be
programmatically revoked across providers – one API might let users or admins revoke tokens via an
endpoint, while another requires manual action. If a user leaves an organization, ensuring all their
third-party OAuth tokens are revoked is a challenge. A recent disclosure in late 2023 highlighted a
scenario where former employees retained access to corporate apps via OAuth tokens even after
their primary accounts were deactivated . In that case, users had logged into services like Slack and
Zoom using “Login with Google.” When their Google Workspace account was suspended, the OAuth
tokens and sessions in the third-party apps were still active because the connection was not fully
severed. The lack of a coordinated token revocation or visibility meant admins could not easily even
see these lingering tokens . This example underscores how inconsistent handling of OAuth across
systems (Google vs. Slack in this case) can create security blind spots. In summary, the OAuth
ecosystem’s non-uniform implementations and optional features can introduce security issues that are
not immediately obvious, especially when an application – or an AI agent – straddles multiple services.

Implications for MCP and AI System Integrations

When we apply these OAuth limitations to the Model Context Protocol environment, the stakes
become higher. By design, MCP allows an AI model to operate across multiple systems and data
sources, maintaining context and performing actions on behalf of a user. If OAuth is the mechanism
granting access to each system, then all the earlier concerns are multiplied by the number of integrated
systems. Below we analyze the key implications:

Privilege Aggregation and Escalation: Under MCP, a single AI model might hold OAuth tokens
for a code repository, a cloud storage service, an email account, and more – all at once. Each
token by itself may already be over-privileged (coarse scopes), and in aggregate the model
effectively has the union of all these privileges . This creates a centralized vulnerability. If the
model is compromised (say, via a prompt injection that causes it to leak or misuse a token), an
attacker could gain a super-token access to many systems at once. Even without an external
attacker, the model itself could accidentally use a token in an unintended way. Since OAuth
doesn’t enforce contextual restrictions, the AI might apply a permission in the wrong context –
for example, using an admin-level cloud API token when it only needed read access for a
particular task. The difficulty of enforcing least privilege in OAuth means an MCP-integrated
model is likely running with more privilege than necessary on each system , and any bug
or manipulation can escalate into a full breach of those systems.

Cross-System Exploitation: In a traditional single-app scenario, if an OAuth token is
compromised, only the connected service is affected. In MCP, however, an AI bridging multiple
services could be a conduit for crossing over. An exploit in one system could be leveraged to
attack another through the model. For example, if an attacker compromises the model’s token
for a chat platform, they might inject a malicious command that causes the model to use its
database token to exfiltrate sensitive records. Since the model has credentials for disparate
systems, a foothold in one can be used to move laterally into others – a form of cross-system
attack unique to multi-integrated AI agents . This is especially concerning if the model
confuses context; the AI might not have human-level judgment about when not to mix data
between systems. OAuth provides no built-in defense against such misuse: the token for Service
A will happily be honored by Service A even if the AI was tricked by something from Service B.
Thus an MCP context can amplify the impact of any single OAuth token compromise or mis-
issuance, turning it into a multi-system breach.

17

17

•

18

19 20

•

21

5

https://www.nudgesecurity.com/post/google-oauth-vulnerability#:~:text=Slack%20or%20Zoom%20using%20Google,leave%20a%20back%20door%20for
https://www.nudgesecurity.com/post/google-oauth-vulnerability#:~:text=Slack%20or%20Zoom%20using%20Google,leave%20a%20back%20door%20for
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=MCP%27s%20reliance%20on%20OAuth%20could,an%20amplified%20risk%20surface%20through
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,unchanged%20throughout%20the%20session%2C%20lacking
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,Different%20platforms%20implement%20OAuth%20with
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,concerns%2C%20limiting%20its%20potential%20benefits

Auditing and Accountability Challenges: OAuth tokens don’t inherently carry user intent
information on each request – they simply grant access. In an MCP scenario, an AI model might
make API calls to various services using tokens on the user’s behalf, but if something goes
wrong, it can be hard to trace why it did so. Was a certain action (e.g., deleting a file or leaking a
document) the result of a legitimate instruction, a prompt injection, or an outright compromise?
Traditional logs at each service will just show that the authorized token performed the action.
Without fine-grained scopes or contextual authorization, we lack visibility into what the model
was supposed to do versus what it actually did. This makes security auditing difficult . The
coarse nature of OAuth scopes also means logs won’t show which specific subset of data the
model was meant to touch. From a governance perspective, this is troubling: organizations
might find it challenging to demonstrate compliance with data regulations (like proving that an
AI only accessed permitted records) when OAuth tokens grant broad access and the AI’s usage is
a black box. In essence, OAuth wasn’t designed for multi-hop delegated actions, which is what
MCP orchestrates, so the usual assurances (scopes, consent) are too vague to capture the
nuance of an AI’s behavior across systems.

Compliance and Control Gaps: Many industries have strict access control requirements, such as
separation of duties and need-to-know access. OAuth’s model of broad tokens and lack of
partial consent can clash with these requirements. In MCP, an AI could unintentionally violate
compliance by drawing data from one context into another. For example, an AI with access to
both a healthcare database and a public code repository might inadvertently include sensitive
patient data in a code comment pushed to GitHub – all because it had the OAuth credentials to
do both and wasn’t restrained in context. Regulators would rightfully be alarmed at such a
scenario. The lack of granular revocation is another issue: if an anomaly is detected, simply
cutting off the AI’s access selectively is hard – one might have to revoke all tokens and thereby
halt all functionality, or otherwise leave potential backdoors open. Organizations using MCP in
regulated environments (finance, health, government) could face an all-or-nothing choice on
trust: either trust the AI integration completely (with broad OAuth tokens), or disallow it entirely
– a dilemma rooted in OAuth’s coarse control model . Until OAuth mechanisms improve, this
could slow MCP adoption in sensitive fields, as noted by security perceptions that OAuth-based
integrations might be too risky .

In summary, the very design decisions that made OAuth simple and flexible – static scopes, bearer
tokens, broad consent – become critical weak points when an AI agent is orchestrating activity across
many platforms. The Model Context Protocol promises to empower AI with seamless access to tools and
data, but if it leans on OAuth without additional safeguards, it inherits all of OAuth’s weaknesses. An
MCP-integrated AI essentially concentrates the combined authority granted by multiple OAuth tokens,
and any failure of that system (through attack or error) could have far-reaching consequences. This
means that security practitioners must be extremely vigilant in how OAuth is used within MCP:
monitoring token usage, employing anomaly detection, and putting external guardrails around the AI’s
actions will be crucial to prevent abuse.

Real-World Case Examples of OAuth Vulnerabilities

To ground the discussion, we now examine a few real incidents and scenarios that exemplify OAuth’s
security issues, especially as they relate to multi-system integrations akin to MCP:

GitHub OAuth Token Breach (2022): As introduced earlier, GitHub revealed that attackers stole
OAuth tokens issued to popular DevOps integrations (Heroku and Travis CI) and used them to
access GitHub’s API on behalf of numerous victims. The stolen tokens granted what was

•

22

•

23

24

•

6

file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,concerns%2C%20limiting%20its%20potential%20benefits
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=Organizations%20in%20regulated%20industries%20face,additional%20challenges
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,concerns%2C%20limiting%20its%20potential%20benefits

effectively full repository access to the victims’ code (due to the broad scopes those apps
required). GitHub’s investigation found that dozens of private repositories were downloaded
without authorization . This case shows the impact of token theft: one leaked credential
from a third-party service led to a supply chain compromise of many organizations. It also
highlights the danger of coarse scopes – the Heroku and Travis apps requested extensive repo
permissions, so the tokens the attackers obtained were extremely powerful. GitHub and the
affected providers had to revoke all tokens and notify users to reauthorize, a disruptive process.
If an AI system were using MCP to interface with GitHub under the hood, such a token theft
could mean an attacker suddenly has the AI’s privileges. For instance, an attacker could silently
use a stolen token to query or modify data, and the AI (or the user) might not realize that its
token is being misused elsewhere. This incident underscores why keeping OAuth tokens secure
is paramount, and why over-privileged tokens (with “all repo” access) are ticking time bombs.

Google Docs OAuth Worm (2017): This incident stands out as an OAuth-driven attack that
spread rapidly. The malicious application cleverly named “Google Docs” leveraged Google’s
OAuth consent process to get users to approve access to their Gmail and contacts .
Thousands of users clicked Allow, perhaps thinking it was a legitimate Google request, given the
app’s name and the context of receiving an email from a known contact. Once authorized, the
app had the ability to read and send emails and harvest contacts – essentially full email account
control. The worm then emailed itself to all of the victim’s contacts, using Gmail’s API via the
OAuth token, and hid the sent messages. Not only did this attack propagate quickly in a worm-
like fashion , it also demonstrated a crucial point: OAuth can be an attack vector that
bypasses traditional security. Even strong passwords and 2FA were ineffective here, because the
user’s consent was the only barrier, and it was overcome by deception . For MCP, this
example is a warning that user consent for AI actions must be treated carefully. If a malicious
request made it into an AI’s instruction (say via a poisoned data source) and the AI had an OAuth
token, the AI might perform a dangerous action thinking it’s authorized. The Google Docs worm
also emphasizes the need for better app verification – Google later improved their processes to
prevent apps from impersonating Google’s own product names and to alert users to unverified
apps. In the context of MCP, ensuring that the AI only uses OAuth tokens with verified, trusted
services is vital; otherwise, the AI could be tricked into interacting with a malicious service.

12

•

25

26

15

7

https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/#:~:text=compromised%20OAuth%20user%20tokens%20from,actors%20may%20be%20mining%20the
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=OAuth%20allows%20third,without%20giving%20up%20your%20credentials
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=Worm
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=email%20pretext%20and%20appears%20legitimate,factor%20authentication%20%282FA

A deceptive OAuth consent prompt from the 2017 Google Docs phishing attack. The fake app “Google Docs”
requested broad Gmail and contacts permissions, offering only a single Allow/Deny choice to the user (no
granular consent), which many unwittingly accepted. This real-world phishing incident demonstrates how
OAuth’s lack of selective authorization and user interface limitations can be exploited. The
permissions requested (as shown above) were extremely broad – “Read, send, delete, and manage your
email” basically grants full control over the Gmail account. Yet the user had no option to grant lesser
access (they could not, for example, say “just read emails, not delete or send”). The coarse consent
model made it an all-or-nothing decision, and many chose “Allow,” enabling the worm to abuse their
accounts . For cybersecurity professionals, this case is a reminder that even absent a technical
vulnerability, the OAuth flow can be manipulated through social engineering and UI design. In an AI
scenario, one might imagine an attacker crafting input to an AI assistant that causes it to visit a
malicious OAuth link – if the AI is operating autonomously with certain credentials, it could potentially
self-authorize a bad request. While that is speculative, it’s analogous to how users were tricked; an AI
agent with the ability to initiate OAuth flows would need safeguards to avoid “Allowing” actions that
compromise security.

OAuth Implementation Flaw in Google Cloud Integrations: There have also been reports of
more subtle OAuth issues that could affect enterprise cloud environments. In late 2023,
researchers highlighted a Google OAuth oversight that allowed employees (or ex-employees) to
retain access to third-party SaaS accounts even after their Google Workspace access was
suspended . By using a personal Google account masquerading as a corporate account (via
an email alias trick), an individual could sign into services like Slack using OAuth, and that
session would not be tied to the actual corporate user identity. When the person left the
company and their official Google account was deactivated, the Slack (or other SaaS) OAuth
session persisted because it was linked to the attacker-controlled Google account which
remained active . This is less of a single dramatic incident and more of a structural
vulnerability, but it showcases an implementation inconsistency with serious security
implications. The identity provider (Google) and the service (Slack/Zoom) had a trust model that
could be gamed, and there was no visibility to administrators. In the context of MCP, this
translates to a need for vigilance about how tokens are issued and tied to identities. If an AI is
granted a token, is it clear whose authority it carries, and is it automatically revoked when that
user leaves or when the AI’s authorization is no longer valid? Currently, OAuth leaves these
questions to each implementation. A mismatch or oversight (as in the Google-Slack example) can
create a backdoor that stays open. MCP integrators should ensure that there are processes to
audit and expire tokens appropriately, or else an AI could continue to have access that no one
realizes it has.

These examples underscore the multifaceted nature of OAuth security problems: blunt permission
scopes enabling overreach, token theft enabling large-scale breaches, user consent UX enabling
phishing, and implementation nuances enabling persistent access or confusion. Each of these is highly
relevant to any system, like MCP, that will rely on OAuth to mediate access between an AI and external
services. The incidents with GitHub and Google also show that these are not just theoretical concerns
– attackers are actively targeting OAuth credentials and flows to compromise systems. Therefore,
anyone deploying AI systems that integrate with other platforms must treat OAuth tokens and
permissions as critical security assets.

Conclusion

OAuth has been a powerful enabler of connected applications, but its current limitations present
significant security challenges for advanced integrations such as the Model Context Protocol. As we
have discussed, OAuth’s coarse-grained permission model and all-or-nothing consent provide a poor

25

•

17

17

8

https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=OAuth%20allows%20third,without%20giving%20up%20your%20credentials
https://www.nudgesecurity.com/post/google-oauth-vulnerability#:~:text=Slack%20or%20Zoom%20using%20Google,leave%20a%20back%20door%20for
https://www.nudgesecurity.com/post/google-oauth-vulnerability#:~:text=Slack%20or%20Zoom%20using%20Google,leave%20a%20back%20door%20for

level of least-privilege control. Users (or AI acting on users’ behalf) are often forced to grant broader
access than necessary, increasing the potential impact if something goes wrong. The inability to
selectively authorize or easily revoke specific permissions means that once an OAuth token is issued, it
becomes a wide-ranging key that is hard to constrain. This is especially dangerous in the MCP scenario,
where an AI may hold multiple such keys simultaneously. We have seen how token theft or misuse
can result in major breaches – for example, a single stolen token led to dozens of companies’ source
code being downloaded , and a single malicious app’s token led to a worm that spread across
countless Gmail accounts . In an AI context, a compromised token could allow an adversary not only
to access data but potentially to manipulate the AI’s behavior (by feeding it falsified data from a system
it trusts, for instance).

The implementation inconsistencies in OAuth add another layer of risk. MCP-based systems will
interact with multiple OAuth providers, each with their own quirks and potential vulnerabilities. As the
examples illustrated, any weak link – whether it’s a lax redirect URI check, an overly permissive scope, or
a token that isn’t revoked when it should be – can become the vector for an exploit. Unfortunately, when
an AI is in the middle, that exploit can propagate through the very connections that MCP is meant to
facilitate, undermining the integrity of the AI’s operations across all connected systems.

In conclusion, the security concerns of OAuth have outsize implications for AI integrations using
protocols like MCP. Organizations experimenting with connecting AI models to their sensitive systems
via OAuth need to be acutely aware of these risks. The severity of potential impacts ranges from loss of
sensitive data, to unauthorized transactions, to complete compromise of multiple linked accounts.
While this paper has focused on analyzing the problems rather than solutions, the clear takeaway is
that additional safeguards are necessary when using OAuth in such contexts. This might include
tighter scope management, rigorous monitoring of AI actions, frequent token audits, user education on
consent, and possibly augmenting OAuth with custom restrictions or verifying steps for AI usage.
Absent such measures, the convenience of OAuth could turn into a nightmare scenario in which an AI
meant to increase productivity instead becomes an unwitting conduit for security failures. The OAuth
protocol’s limitations, if unmitigated, could significantly weaken the security posture of MCP-enabled AI
systems – a risk that cybersecurity professionals and AI developers must not ignore.

Introducing the Model Context Protocol \ Anthropic
https://www.anthropic.com/news/model-context-protocol

GitHub oAuth apps: What's the most granular scope to get access to Pull Requests? - Stack Overflow
https://stackoverflow.com/questions/74314624/github-oauth-apps-whats-the-most-granular-scope-to-get-access-to-pull-
requests

git - Minimal set of scopes to push to github using an access token - Stack Overflow
https://stackoverflow.com/questions/63906613/minimal-set-of-scopes-to-push-to-github-using-an-access-token

Google Introduces Consent Unbundling for OAuth in Ads APIs Starting May 2025
https://web.swipeinsight.app/posts/consent-unbundling-for-oauth-user-authentication-in-google-cloud-apis-14891

Using OAuth 2.0 scopes vs. permissions for app authorization
https://www.aserto.com/blog/scopes-vs-permissions-authorization

Security alert: Attack campaign involving stolen OAuth user tokens issued to two third-party
integrators - The GitHub Blog
https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/

How Hackers Used Stolen GitHub Tokens to Access Private Source Code
https://blog.gitguardian.com/how-hackers-used-stolen-github-oauth-tokens/

12

25

1

2

3

4

5 6 7 8

9 10 12

11

9

https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/#:~:text=compromised%20OAuth%20user%20tokens%20from,actors%20may%20be%20mining%20the
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=OAuth%20allows%20third,without%20giving%20up%20your%20credentials
https://www.anthropic.com/news/model-context-protocol#:~:text=Model%20Context%20Protocol
https://www.anthropic.com/news/model-context-protocol
https://stackoverflow.com/questions/74314624/github-oauth-apps-whats-the-most-granular-scope-to-get-access-to-pull-requests#:~:text=I%27m%20reading%20the%20documentation%20on,repos%2C%20without%20providing%20write%20access
https://stackoverflow.com/questions/74314624/github-oauth-apps-whats-the-most-granular-scope-to-get-access-to-pull-requests
https://stackoverflow.com/questions/74314624/github-oauth-apps-whats-the-most-granular-scope-to-get-access-to-pull-requests
https://stackoverflow.com/questions/63906613/minimal-set-of-scopes-to-push-to-github-using-an-access-token#:~:text=,has%20access%20to%2C%20in%20perpetuity
https://stackoverflow.com/questions/63906613/minimal-set-of-scopes-to-push-to-github-using-an-access-token
https://web.swipeinsight.app/posts/consent-unbundling-for-oauth-user-authentication-in-google-cloud-apis-14891#:~:text=Consent%20unbundling%20allows%20users%20to,while%20older%20projects%20do%20not
https://web.swipeinsight.app/posts/consent-unbundling-for-oauth-user-authentication-in-google-cloud-apis-14891
https://www.aserto.com/blog/scopes-vs-permissions-authorization#:~:text=2
https://www.aserto.com/blog/scopes-vs-permissions-authorization#:~:text=1
https://www.aserto.com/blog/scopes-vs-permissions-authorization#:~:text=OAuth%20scopes%20can%20designate%20general,you%20cannot%20get%20using%20scopes
https://www.aserto.com/blog/scopes-vs-permissions-authorization#:~:text=Perhaps%20the%20biggest%20disadvantage%20of,most%20organizations%20simply%20cannot%20afford
https://www.aserto.com/blog/scopes-vs-permissions-authorization
https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/#:~:text=Looking%20across%20the%20entire%20GitHub,to%20pivot%20into%20other%20infrastructure
https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/#:~:text=applications%20were%20stolen%20and%20abused,to%20pivot%20into%20other%20infrastructure
https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/#:~:text=compromised%20OAuth%20user%20tokens%20from,actors%20may%20be%20mining%20the
https://github.blog/news-insights/company-news/security-alert-stolen-oauth-user-tokens/
https://blog.gitguardian.com/how-hackers-used-stolen-github-oauth-tokens/#:~:text=Currently%2C%20a%20supply%20chain%20attack,downloaded%20by%20the%20unknown%20actor
https://blog.gitguardian.com/how-hackers-used-stolen-github-oauth-tokens/

Gmail OAuth Phishing Goes Viral | Duo Security
https://duo.com/blog/gmail-oauth-phishing-goes-viral

One Token, Two Apps: The OAuth Flaw That Can Compromise Your Accounts — A Silent Security
Disaster | by Rahul Gairola | Medium
https://medium.com/@rahulgairola/one-token-two-apps-the-oauth-flaw-that-can-compromise-your-accounts-a-silent-
security-disaster-31cff04dcceb

2024 Google OAuth Vulnerability Technical Guide | Nudge Security
https://www.nudgesecurity.com/post/google-oauth-vulnerability

mcp_oauth_security_brief.md
file://file-ScmbB61bFngWFM6VwvLK3F

13 14 15 25 26

16

17

18 19 20 21 22 23 24

10

https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=This%20attack%20started%20with%20a,a%20document%20via%20Google%20Docs
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=,mitigating%20strong%20passwords%20or%20two
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=email%20pretext%20and%20appears%20legitimate,factor%20authentication%20%282FA
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=OAuth%20allows%20third,without%20giving%20up%20your%20credentials
https://duo.com/blog/gmail-oauth-phishing-goes-viral#:~:text=Worm
https://duo.com/blog/gmail-oauth-phishing-goes-viral
https://medium.com/@rahulgairola/one-token-two-apps-the-oauth-flaw-that-can-compromise-your-accounts-a-silent-security-disaster-31cff04dcceb#:~:text=making%20%E2%80%9CLogin%20with%20Google%E2%80%9D%20,step%20reproduce%20steps
https://medium.com/@rahulgairola/one-token-two-apps-the-oauth-flaw-that-can-compromise-your-accounts-a-silent-security-disaster-31cff04dcceb
https://medium.com/@rahulgairola/one-token-two-apps-the-oauth-flaw-that-can-compromise-your-accounts-a-silent-security-disaster-31cff04dcceb
https://www.nudgesecurity.com/post/google-oauth-vulnerability#:~:text=Slack%20or%20Zoom%20using%20Google,leave%20a%20back%20door%20for
https://www.nudgesecurity.com/post/google-oauth-vulnerability
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=MCP%27s%20reliance%20on%20OAuth%20could,an%20amplified%20risk%20surface%20through
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,unchanged%20throughout%20the%20session%2C%20lacking
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,Different%20platforms%20implement%20OAuth%20with
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,concerns%2C%20limiting%20its%20potential%20benefits
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,concerns%2C%20limiting%20its%20potential%20benefits
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=Organizations%20in%20regulated%20industries%20face,additional%20challenges
file://file-ScmbB61bFngWFM6VwvLK3F#:~:text=,concerns%2C%20limiting%20its%20potential%20benefits
file://file-ScmbB61bFngWFM6VwvLK3F

	OAuth Security Concerns and Implications for the Model Context Protocol (MCP)
	Abstract
	Introduction
	OAuth’s Security Limitations
	Coarse-Grained Permissions and Static Scopes
	Lack of Selective or Contextual Authorization
	Token Theft and Exposure Risks
	Implementation Inconsistencies and Platform Variations

	Implications for MCP and AI System Integrations
	Real-World Case Examples of OAuth Vulnerabilities
	Conclusion

