
Security Debrief: OpenAI’s ChatGPT Connector
GitHub App

Exact Permissions Review

Figure: The ChatGPT Connector GitHub App (by OpenAI) and its permission summary. The ChatGPT
Connector app requests broad repository access when installed. According to GitHub’s installation
screen, it is granted:

Read access to repository metadata – This default permission allows reading basic repo
information (metadata) but not sensitive content . GitHub notes that the metadata API
endpoints are read-only and do not leak private data.
Read and write access to code (repository contents) – Full access to view and modify the code
in your repositories . In practice, this means the app’s installation token can read all files and
push commits to the repo. It is essentially equivalent to a user with write permissions to the
repository’s contents.
Read and write access to pull requests – Permission to read PR data and perform PR actions
via the API. This includes creating new pull request objects and modifying or merging PRs. (For
example, OpenAI’s app can open a PR with code changes. GitHub’s docs note that write-level PR
access is needed for an app to create or update pull requests .)
Read and write access to issues – Ability to read issue data and also create or edit issues and
comments. The connector could, for instance, open new issues or comment on existing ones via
the GitHub API.
Read and write access to Actions and Workflows – This grants control over GitHub Actions CI/
CD workflows. “Actions” permission covers workflow runs and artifacts (e.g. the app could trigger
or cancel runs, or read action logs/artifacts), while “Workflows” permission is required to create
or modify workflow files in the repository. In fact, GitHub will reject any attempt by an app to
add or change files under .github/workflows/ unless it has the workflows permission

. With these permissions, the ChatGPT Connector can potentially enable/disable workflows
or push new workflow files.

Overall, the connector’s permission set is very expansive – essentially full read/write for code and
project data on selected repositories (except for admin settings). This is comparable to an OAuth token
with the “repo” scope, which GitHub defines as full read/write access to code, issues, pull requests, and
more . OpenAI presumably chose these broad scopes to ensure ChatGPT can not only read your
code but also create branches, propose changes, and interact with development workflow as needed.

•
1

•
2

•

3

•

•

4

2

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://buildkite.com/docs/pipelines/source-control/github#:~:text=,From%20the%20GitHub%20documentation
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#:~:text=,without%20granting%20access%20to%20the
https://www.opslevel.com/resources/updated-opslevel-github-app-permissions-as-part-of-service-creation#:~:text=at%20this%20time%20to%20use,checks%2C%20including%20new%20checks%20around
https://github.com/orgs/community/discussions/51520#:~:text=refusing%20to%20allow%20a%20GitHub,yml%20without%20workflows%20permission
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#:~:text=,without%20granting%20access%20to%20the

Actual Permissions vs. Minimal Desired Access

The current permission set goes beyond just creating pull requests. In an ideal least-privilege
scenario, we might only give the app the ability to propose changes via PRs, without the ability to
directly modify code in the main repository. For example, the minimal needed rights could be: read-
only code access (so ChatGPT can read your repo) and permission to write pull requests (so it can
open PRs with suggested changes). This would prevent the app from pushing commits directly to
protected branches.

However, GitHub’s model doesn’t offer a separate “create PR without direct code write” permission –
write access to code (contents) is a blanket permission that includes pushing commits to any branches
the app has access to. In practice, if an app can write to the repo’s contents, it can theoretically push to
main (or any branch) unless blocked by branch protections. This is why the ChatGPT Connector having

“write” on code is significant: it implies the app could commit changes outright. The safer workflow is
for AI assistants to only open PRs that a human reviews and merges, rather than the bot altering the
main codebase on its own. The risk of granting write access to code is that the app (or an agent
acting through it) could bypass the normal code review process and modify source code directly.
For instance, it might inadvertently push a change to master instead of creating a PR, if
misconfigured or in response to a prompt – a scenario one would want to avoid.

By contrast, a pull-request-only approach confines the AI’s changes to a new branch and requires
maintainers to manually approve and merge. This greatly reduces risk, since maintainers can inspect AI-
generated code before it affects production. It also ensures compliance with typical development
workflows (tests, reviews, etc., on the PR). Direct write access to code is inherently riskier – e.g. an
agent could alter critical files or bypass approvals. In summary, the ChatGPT Connector’s actual
permissions enable both PR creation and direct commits, whereas a least-privilege design would try to
allow the former without the latter. Unfortunately, as discussed next, GitHub doesn’t yet provide such
fine-grained control.

Limitations of GitHub’s OAuth/App Permission Model

GitHub’s current app permission model lacks the granularity to allow “PR-only” write access. Repository
permissions are coarse – e.g. an app can have read or read/write for “Contents” (code), but there is no
built-in way to permit “write but only in pull requests” or “disallow direct pushes.” As the OpsLevel team
noted, “even though we only need to perform a limited set of actions, the GitHub permissions model is not
granular enough to restrict us to only these required actions.” In their case (creating repos and PRs),
they had to request broad write scopes because more restrictive scopes simply don’t exist. This is the
same core issue with ChatGPT’s connector: to let it open PRs with code changes, we must give it broad
code write access.

For OAuth apps, the situation is similar or worse – the classic repo scope grants full control over code,
issues, and more . GitHub fine-grained PATs and GitHub Apps improved granularity compared to
a single monolithic scope, but they still tie together permissions in chunks that may exceed a specific
app’s minimal needs. For instance, “Contents: Read/Write” covers everything from creating branches
and commits to deleting files. There’s no way for a repository owner to configure an installed GitHub
App to only allow certain write operations but not others. It’s essentially an all-or-nothing choice for that
category of data.

One partial safeguard is the use of branch protection rules on important branches (like main). If
branch protections require pull requests and reviews before merge, then even an app with write

5

2

2

https://www.opslevel.com/resources/updated-opslevel-github-app-permissions-as-part-of-service-creation#:~:text=Even%20though%20we%20only%20need,to%20only%20these%20required%20actions
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#:~:text=,without%20granting%20access%20to%20the

permissions cannot push to protected branches unless explicitly exempted. GitHub has updated branch
protection settings to allow or deny exceptions for GitHub Apps as well . By default, an app without
the “ bypass branch protection” ability would be forced to go through PRs on a protected branch. In
other words, repository maintainers can configure that “ChatGPT Connector cannot directly push to
main; it must open a PR and have it approved,” leveraging branch protection. This is a crucial
mitigation, but it is external to the app’s permission grant. It requires admins to correctly set up
protections. And if those settings are relaxed (or the app is added as an exception), the app’s token
could push straight to main.

The lack of built-in granular scopes (like a hypothetical “PR creation” scope) is concerning when we
imagine more autonomous coding agents in the future. As these AI agents become capable of writing
and deploying code autonomously, the platform’s coarse permission model could lead to over-
privileged apps. A future “AI Dev Agent” might only need to propose changes, but if given full write
rights, a logic error or prompt injection could cause it to modify or delete code in ways the owners
didn’t intend. GitHub’s current OAuth/App model doesn’t provide a way to natively restrict such an app to
a safe subset of actions. This means repository owners must carefully scope which repos an app can
access and rely on external safeguards (like branch rules and monitored workflows) to limit damage.
The need for more fine-grained permission controls is increasingly evident as automated agents play a
bigger role in codebases .

Security Threat Model and Potential Abuse Scenarios

Given the high level of access the ChatGPT Connector has, it’s important to consider what could go
wrong if the app or its credentials were compromised. This could happen via a malicious update in
OpenAI’s code, a supply-chain attack, or even an indirect prompt injection that causes ChatGPT to
misuse its access. If an attacker obtained the connector’s installation token (or could impersonate
the app), they would essentially have the privileges of a repo collaborator with write access. Some
of the key threats include:

Unauthorized Code Changes (Backdoors or Destructive Commits): With write access to code,
a compromised app could insert malicious code into your repository – for example, adding a
subtle vulnerability/backdoor in the source or outright replacing files with corrupted versions. It
could push commits directly to existing branches (if not protected) or create new branches with
harmful code. In the worst case, it might push to the default branch and deploy malware or
destructive changes without code review. This kind of malicious code injection could go
unnoticed if not actively monitored, potentially introducing serious security holes into the
project.

Malicious Pull Requests and Merges: Even if direct pushes are limited by policy, an attacker
could use the app to craft a malicious pull request. For instance, they might open a PR that
appears to make innocuous changes but actually introduces a vulnerability. If the organization
has any automated merge or CI process that isn’t airtight, the attacker might manipulate it.
Clutch Security notes that threat actors can abuse PR workflows – if CI/CD automatically runs on
PRs and the code isn’t thoroughly reviewed, an attacker’s code could slip through and, say,
extract secrets during the build . In the context of ChatGPT Connector, an attacker could
theoretically have the app approve or merge its own PR (if the process allows) or simply rely on
maintainers to merge a seemingly benign PR generated by “ChatGPT”. The key risk is that the
normal safety net of human code review could be subverted or trusting maintainers might
merge changes coming from a trusted app identity.

6

5

•

•

7

3

https://stackoverflow.com/questions/65348124/in-github-how-can-i-grant-an-app-permissions-to-commit-to-a-branch-with-protecti#:~:text=,without%20creating%20a%20pull%20request
https://www.opslevel.com/resources/updated-opslevel-github-app-permissions-as-part-of-service-creation#:~:text=Even%20though%20we%20only%20need,to%20only%20these%20required%20actions
https://www.clutch.security/blog/the-new-york-times-exposed-github-token-breach#:~:text=1,variables%20or%20secrets%20during%20the

CI/CD Workflow Tampering: With the Actions and Workflows permissions, a compromised
connector could alter the repository’s continuous integration pipeline. It might inject a new
GitHub Actions workflow file that runs on certain triggers. For example, an attacker could use
the token to add a malicious Actions workflow that executes on every push or on a schedule.
This workflow could exfiltrate secrets or modify build artifacts. A real-world example of this
occurred in the Grafana incident, where attackers who stole a GitHub App token used it to push
a malicious GitHub Actions workflow into the repo – that workflow collected all secret credentials
from the environment and sent them out . The ChatGPT Connector could similarly be
instructed (or forced) to add a workflow that, say, runs env and sends environment variables to
an external server. In addition, the app could modify or disable existing workflows: e.g. it could
turn off tests or security scans (by disabling the workflow or changing its triggers), thereby
disabling CI/CD safeguards. This would let malicious changes avoid detection. In short, control
over workflows means the attacker can undermine the integrity of the development and
deployment process.

Exfiltration of Source Code and Data: The connector has read access to all repository content,
so an attacker could use it as a vehicle to steal sensitive information. This could be proprietary
source code, configuration files, or even data files stored in the repo. The app could
systematically read the entire repository and send it to an external server controlled by the
attacker. Because ChatGPT is meant to read code, such actions might not be immediately
suspicious. High-privilege tokens pose a significant data leakage risk if compromised . In
the case of ChatGPT Connector, any private code it has access to could be harvested. This is
especially dangerous if the repositories contain secrets (API keys, credentials) in the code – the
attacker could search for and extract those as well. Essentially, the organization’s intellectual
property and any sensitive info in the repo could be exposed.

Credential Theft via CI Secrets: Beyond just reading the code, an attacker might go after
secrets stored in the repository’s CI/CD. Many projects have CI secrets (deploy keys, cloud
credentials, etc.) that are accessible to workflows. By abusing the Actions permission, the
attacker can run a job that dumps these secrets. For instance, the malicious workflow in the
Grafana case serialized all GitHub Action secrets and exfiltrated them . If ChatGPT Connector
were compromised, it could be instructed to perform a similar action: trigger a custom workflow
run that prints all secret variables or database passwords, etc., and then capture that output.
This could lead to broader compromise (e.g. leaking cloud infrastructure credentials). It’s a form
of supply-chain attack using the CI pipeline.

Project Integrity and Availability Attacks: With issue and PR privileges, a malicious actor could
also disrupt the project’s workflow in less subtle ways – for example, mass-closing all issues or
open pull requests, vandalizing issue comments with spam or false information, or opening a
flood of new issues to overwhelm maintainers. They might modify wiki pages or release notes (if
those are stored in the repo) to mislead users. While these actions may be noticed and rolled
back, they could impede the development process and trust. Also, since the app can modify
workflows and code, an attacker could attempt to sabotage the repository – e.g. insert code
that intentionally breaks the build or delete critical files (ransomware style). Although the Git
history could restore things, it would cause downtime and chaos.

In summary, the attack surface is significant whenever an app like ChatGPT Connector has wide write
access. A compromised token would let an adversary do almost anything the repository owner can do
short of changing settings: publish malicious code, alter CI pipelines, steal confidential data, and
generally wreak havoc in the codebase. These scenarios underscore the importance of limiting app
permissions and using defense-in-depth: monitor the app’s activity, enforce branch protections (so even

•

8

•

9

•

10

•

4

https://www.stepsecurity.io/blog/grafana-github-actions-security-incident#:~:text=Subsequent%20Actions%3A%20Pushing%20a%20Malicious,Workflow
https://gbhackers.com/codeqleaked-github-supply-chain-attack/#:~:text=These%20workflows%20often%20rely%20on,pose%20significant%20risks%20if%20compromised
https://www.stepsecurity.io/blog/grafana-github-actions-security-incident#:~:text=You%20can%20view%20an%20interactive,of%20the%20exploit%20code%20below

a rogue ChatGPT PR can’t auto-merge), and perhaps restrict the app to only non-production repositories
or a sandbox until it’s fully trusted. As one security analysis succinctly put it, “tokens with high privileges
pose significant risks if compromised.” This absolutely applies to the ChatGPT Connector’s token – it
must be handled as a sensitive credential, because in the wrong hands it could facilitate a serious
supply chain attack on your code.

Sources: The permission scopes and their implications are based on GitHub’s official documentation
and installation screens . Observations about limited permission granularity reference GitHub’s
own model and expert commentary . Security scenarios are informed by real incidents (e.g.
Grafana’s breach via a GitHub App token) and industry analysis of risks in CI/CD integrations

.

GitHub | Buildkite Documentation
https://buildkite.com/docs/pipelines/source-control/github

Scopes for OAuth apps - GitHub Docs
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps

Updated OpsLevel GitHub App Permissions as Part of Service Creation
https://www.opslevel.com/resources/updated-opslevel-github-app-permissions-as-part-of-service-creation

refusing to allow a GitHub App to create or update workflow `.github ...
https://github.com/orgs/community/discussions/51520

jenkins - In GitHub how can I grant an app permissions to commit to a branch with protections? -
Stack Overflow
https://stackoverflow.com/questions/65348124/in-github-how-can-i-grant-an-app-permissions-to-commit-to-a-branch-with-
protecti

The New York Times Exposed GitHub Token Breach
https://www.clutch.security/blog/the-new-york-times-exposed-github-token-breach

Grafana GitHub Actions Security Incident - StepSecurity
https://www.stepsecurity.io/blog/grafana-github-actions-security-incident

CodeQLEAKED: GitHub Supply Chain Attack Enables Code Execution
https://gbhackers.com/codeqleaked-github-supply-chain-attack/

9

1 2

5

8 7

9

1

2

3 5

4

6

7

8 10

9

5

https://gbhackers.com/codeqleaked-github-supply-chain-attack/#:~:text=These%20workflows%20often%20rely%20on,pose%20significant%20risks%20if%20compromised
https://buildkite.com/docs/pipelines/source-control/github#:~:text=,From%20the%20GitHub%20documentation
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#:~:text=,without%20granting%20access%20to%20the
https://www.opslevel.com/resources/updated-opslevel-github-app-permissions-as-part-of-service-creation#:~:text=Even%20though%20we%20only%20need,to%20only%20these%20required%20actions
https://www.stepsecurity.io/blog/grafana-github-actions-security-incident#:~:text=Subsequent%20Actions%3A%20Pushing%20a%20Malicious,Workflow
https://www.clutch.security/blog/the-new-york-times-exposed-github-token-breach#:~:text=1,variables%20or%20secrets%20during%20the
https://gbhackers.com/codeqleaked-github-supply-chain-attack/#:~:text=These%20workflows%20often%20rely%20on,pose%20significant%20risks%20if%20compromised
https://buildkite.com/docs/pipelines/source-control/github#:~:text=,From%20the%20GitHub%20documentation
https://buildkite.com/docs/pipelines/source-control/github
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#:~:text=,without%20granting%20access%20to%20the
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps
https://www.opslevel.com/resources/updated-opslevel-github-app-permissions-as-part-of-service-creation#:~:text=at%20this%20time%20to%20use,checks%2C%20including%20new%20checks%20around
https://www.opslevel.com/resources/updated-opslevel-github-app-permissions-as-part-of-service-creation#:~:text=Even%20though%20we%20only%20need,to%20only%20these%20required%20actions
https://www.opslevel.com/resources/updated-opslevel-github-app-permissions-as-part-of-service-creation
https://github.com/orgs/community/discussions/51520#:~:text=refusing%20to%20allow%20a%20GitHub,yml%20without%20workflows%20permission
https://github.com/orgs/community/discussions/51520
https://stackoverflow.com/questions/65348124/in-github-how-can-i-grant-an-app-permissions-to-commit-to-a-branch-with-protecti#:~:text=,without%20creating%20a%20pull%20request
https://stackoverflow.com/questions/65348124/in-github-how-can-i-grant-an-app-permissions-to-commit-to-a-branch-with-protecti
https://stackoverflow.com/questions/65348124/in-github-how-can-i-grant-an-app-permissions-to-commit-to-a-branch-with-protecti
https://www.clutch.security/blog/the-new-york-times-exposed-github-token-breach#:~:text=1,variables%20or%20secrets%20during%20the
https://www.clutch.security/blog/the-new-york-times-exposed-github-token-breach
https://www.stepsecurity.io/blog/grafana-github-actions-security-incident#:~:text=Subsequent%20Actions%3A%20Pushing%20a%20Malicious,Workflow
https://www.stepsecurity.io/blog/grafana-github-actions-security-incident#:~:text=You%20can%20view%20an%20interactive,of%20the%20exploit%20code%20below
https://www.stepsecurity.io/blog/grafana-github-actions-security-incident
https://gbhackers.com/codeqleaked-github-supply-chain-attack/#:~:text=These%20workflows%20often%20rely%20on,pose%20significant%20risks%20if%20compromised
https://gbhackers.com/codeqleaked-github-supply-chain-attack/

	Security Debrief: OpenAI’s ChatGPT Connector GitHub App
	Exact Permissions Review
	Actual Permissions vs. Minimal Desired Access
	Limitations of GitHub’s OAuth/App Permission Model
	Security Threat Model and Potential Abuse Scenarios

