
Data Tests for Neo4j: Bringing Automated
Testing to Graph Databases
by Dinis Cruz and ChatGPT Deep Research, 2025/06/25

Executive Summary

Neo4j’s flexible, schema-optional nature is a double-edged sword: it empowers rapid graph modeling
but can lead to hidden data inconsistencies as the graph evolves. Data tests for Neo4j apply the proven
principles of software testing to graph data itself. Much like unit tests catch code regressions, data tests
catch graph regressions – unintended changes to the structure or content of your Neo4j database. This
white paper introduces the concept of data tests and why they are critical for Neo4j developers and
architects. It outlines how to implement them using Python’s PyTest and CI/CD pipelines, and how they
provide immediate feedback on any change’s impact . With data tests, every change to the graph
triggers a suite of checks that ensure the data still meets your expectations. The result is a higher
confidence in the integrity of your graph, safer and faster iterations, and a culture of learning from
mistakes by encoding those lessons into automated checks. In short, data tests turn ad-hoc “testing
in your head” into reliable, repeatable software-driven validation – bringing sustainable velocity
and trust to graph database development .

Introduction: The Need for Graph Data Testing

Graph databases like Neo4j excel at capturing complex relationships without a rigid schema. However,
this flexibility means small changes can have far-reaching side effects. A single Cypher query can
inadvertently reshape your data model – adding an unexpected relationship type, introducing duplicate
nodes, or violating an assumption about the graph’s structure. Without explicit checks, such issues
might go unnoticed until they cause problems downstream. In traditional software, developers rely on
tests to detect regressions; yet in the data layer, many teams still rely on manual verification or hope for
the best. Developers might run a few queries to spot-check the data after a change, but these one-off
tests are ephemeral – they vanish as soon as they’re run, with no lasting safety net . As one of Dinis
Cruz’s research notes puts it, “lack of visible tests doesn't mean testing isn't happening – it means testing is
happening inefficiently” . In other words, every time we manually verify the graph, we’re effectively
writing a test in our head and throwing it away.

This approach is risky and costly over time. If a mistake in the graph slips through, it could compromise
analytics results, break application logic, or even accumulate into major data corruption. Here we
invoke a “second story” perspective from safety science: instead of blaming an engineer for a data
mistake, ask what system guardrails were lacking . Often, the answer is better automation. Just as
post-incident analyses in cybersecurity conclude that “the fix might be introducing better tests or tools, not
just telling the developer ‘be more careful’” , the same applies here. Data tests are those guardrails –
automated checks that continuously enforce your graph’s intended structure and rules. They ensure
that when we change our Neo4j data, we don’t unknowingly break something we cared about.

1 2

3 4

3

3

5

5

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=practice,infrastructure%20and%20developer%20experience%3A%20if
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=The%20real%20power%20of%20achieving,that%20seem%20easy%20or%20safe
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=The%20key%20insight%20is%20that,test%20makes%20the%20next%20code
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=risks%20being%20skipped%20later,automating%20tests%20for
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=The%20key%20insight%20is%20that,test%20makes%20the%20next%20code
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=The%20key%20insight%20is%20that,test%20makes%20the%20next%20code
https://docs.diniscruz.ai/2025/02/10/second-stories__from-three-mile-island-to-cybersecurity.html?trk=public_post_comment-text#:~:text=code%20review%20or%20testing%20miss,the%20second%20story%20might%20reveal
https://docs.diniscruz.ai/2025/02/10/second-stories__from-three-mile-island-to-cybersecurity.html?trk=public_post_comment-text#:~:text=code%20review%20or%20testing%20miss,the%20second%20story%20might%20reveal

What Are “Data Tests” in a Graph Database?

Data tests are automated assertions about your database’s content and schema. They are to your
Neo4j data what unit or integration tests are to your application code. In practice, a data test is a small
query (or set of queries) against the graph with an assertion on the result. If the result doesn’t match
expectations, the test fails, alerting you to a potential problem. These tests can be written in a typical
testing framework (for example, PyTest in Python or JUnit in Java) and run as part of your development
or deployment process.

Key characteristics of data tests include:

Automated Execution: Data tests run in an automated fashion (e.g., on each commit or on a
schedule) rather than relying on someone to manually inspect the graph. Once written, a test
can run over and over at virtually no extra cost .
Defined Expectations: Each test encodes an expectation about the graph. This could be a
business rule (e.g. “each Customer node must have an EMAIL property and a relationship to a
Country node”) or an invariant derived from the data model (“there should be no duplicate

relationships of type MANAGES between the same two nodes”).
Targeted Scope: A test typically focuses on one aspect of the data – much like a unit test targets
a small piece of functionality. For example, one data test might count “orphan” nodes of a certain
label (nodes with no relationships when they’re supposed to be part of a connected component)
and assert that the count is zero.
Clear Pass/Fail Criteria: If the graph meets the expected condition, the test passes. If not, it fails
and surfaces details (much like a failing unit test) so the team can investigate.

Some examples of data tests in Neo4j contexts:

Schema compliance: Ensure that all nodes that are supposed to have certain properties or
relationships actually have them. Example: “Every User node has at least one outgoing
BELONGS_TO (Organization) relationship.” A Cypher for this could find any User with no such

relationship and the test would assert that the result set is empty.
Uniqueness and duplicates: Even if Neo4j schema constraints are in place, a test can double-check
critical uniqueness. Example: “No two Person nodes share the same national_id property.”
The test might do a
RETURN national_id, COUNT(*) ... GROUP BY national_id HAVING COUNT(*)>1

and expect zero results.
Referential integrity in graph form: In relational databases, foreign key constraints ensure no child
refers to a missing parent. In graphs, we might write a test for analogous conditions. Example:
“Every ORDER node is connected to an existing Customer node by an PLACED_BY
relationship.” The test could match orders with missing customers.
Forbidden subgraphs or patterns: If certain configurations should never happen in a valid state,
tests can proactively search for them. Example: “There should be no cycle in the reports_to
hierarchy among Employee nodes” (to prevent organizational chart loops). A test might use a
Cypher query with variable-length paths to detect cycles, and expect zero results.
Expected graph metrics: If your data has known bounds or growth rates, tests can assert those.
Example: “The graph should have no more than 5% unlinked nodes” (to catch data isolation
issues), or “If a Project node exists, it must have at least one Task node related.” These ensure
high-level sanity of the data.

In essence, data tests formalize the assumptions and invariants of your graph model. They act as
executable documentation: reading a well-written data test suite can tell a developer or data architect

•

3

•

•

•

•

•

•

•

•

2

https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=The%20key%20insight%20is%20that,test%20makes%20the%20next%20code

a great deal about what “correct” data looks like in your Neo4j instance. This benefits not only Neo4j,
but any database – relational, document, or otherwise – since the principle is general. We focus on
Neo4j because of its popularity and the particular need in schema-flexible graphs, but the practice of
data testing is applicable wherever data quality matters (data warehouses, document stores, etc.). In
fact, the data engineering community has started to adopt similar practices in tools like dbt (data build
tool), where “data tests” are SQL queries run on every pipeline execution to tell you if your data is
correct . What we propose is bringing that same rigor into the world of graph databases.

Benefits of Data Testing for Neo4j

Why should Neo4j developers and architects invest time in writing data tests? Here are the key benefits
and reasons data testing is critical:

Preventing Schema Drift & Data Decay: In Neo4j, there’s no strict schema by default – any
property or relationship can be added unless you enforce constraints. Over a long-lived graph,
this can lead to schema drift: the actual data deviating from the intended model. For example, a
quick fix script might accidentally introduce a new label or leave some data half-updated. Data
tests act as a backstop, catching drift as soon as it happens. They ensure that the implicit schema
you expect is maintained. If someone tries to introduce an incompatible change, a failing test
will flag it before it proliferates.

Immediate Feedback on Changes: One of the greatest advantages of a comprehensive test
suite is the fast feedback loop. With data tests integrated into your CI/CD pipeline, whenever
changes are made – whether it’s a data migration script, an ETL job feeding Neo4j, or an
application feature that modifies the graph – you get instant confirmation that nothing
important was broken. Dinis Cruz emphasizes the value of this feedback loop: “when I make
changes or refactor code, my comprehensive test suite immediately shows me the side effects of those
changes. This feedback loop is invaluable” . The same holds true for graph data: if a colleague’s
change inadvertently deletes a set of relationships, a well-designed test can reveal that impact
immediately, rather than months later when a report or algorithm fails. Fast feedback means
bugs are caught at the point of introduction, which drastically reduces the cost and pain of fixing
them.

Safer Refactoring and Evolution of the Graph: Just as high test coverage in code gives
developers the confidence to refactor and improve the codebase, data tests give architects
confidence to evolve the data model. You might want to rename a relationship type, split a node
label into two more specific labels, or merge duplicate nodes. These are complex operations that
traditionally induce fear – what if we miss an edge case and corrupt the graph? With data tests,
you have an automated safety net. You can perform a refactoring on an ephemeral copy of the
database, run the tests, and instantly see if any invariant was violated. If the tests pass, you have
strong evidence the refactoring preserved all the important properties of the data. In other
words, tests turn risky graph migrations into more routine, manageable tasks by ensuring that
all the things you deemed “must be true” about the data remain true after the change .

Knowledge Preservation and Bug Prevention: Every data test you add is a piece of
organizational knowledge captured in code. Over time, your test suite becomes a living history
of solved problems and implicit requirements in the system . For example, suppose you
discovered a bug where a certain process was creating duplicate nodes. Once you fix it, you add
a test asserting “no duplicate nodes for that entity.” That test now encapsulates the knowledge
of that past bug – preventing regressions and also informing new team members about that

6

•

•

2

•

7

•

8

3

https://datacoves.com/post/dbt-test-options#:~:text=tests%20are%20typically%20run%20during,Continuous%20Integration%29
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=The%20real%20power%20of%20achieving,that%20seem%20easy%20or%20safe
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=The%20real%20power%20of%20achieving,that%20seem%20easy%20or%20safe
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=,world%20use%20case%20we%20encountered

rule. As Dinis Cruz describes in his “bug-first testing” approach, “every test represents a real-world
use case we encountered… we maintain a living history of solved problems… tests become
documentation of edge cases and limitations” . This means your database’s integrity rules aren’t
just tribal knowledge or buried in old incident reports – they are actively checked and visible in
the test suite. It’s a proactive way to learn from incidents. Rather than relying on memory or a
note in a wiki, the test ensures that the same class of error will immediately be caught if it ever
happens again. In effect, data tests institutionalize the lessons from past mistakes. This is much
like the “second story” approach in safety engineering – instead of treating an incident as a one-
off, you change your process (by adding tests/controls) to prevent it in the future .

Reduced Manual Effort and Confidence in Automation: Without data tests, ensuring data
quality often falls to manual efforts: one-off scripts, visual inspections of the graph, or Excel
exports to spot-check values. These are time-consuming and error-prone. Moreover, they must
be repeated whenever you suspect an issue, since they aren’t continuously running. This is what
Dinis calls “Ephemeral Test-Driven Development (ETDD)”, where tests are done in a developer’s head
or ad-hoc scripts and then thrown away . It feels quick but is deceptively expensive over time

. By contrast, automating these checks means you do the work once – writing the test – and
then it runs forever. Every manual query you frequently use to verify the graph’s state is a
candidate to turn into an automated test. Once in place, the development team gains peace of
mind. You don’t have to manually run that Cypher query before each release; you know the
pipeline will flag it if something’s off. This not only saves effort, it reduces stress. Developers can
focus on building features rather than constantly firefighting data issues. In sum, automated
tests replace laborious, error-prone manual QA with reliable, low-cost, and frequent
validation .

Encouraging Better Design and Practices: The very act of writing data tests can improve how
you design your graph model and data loading processes. If writing a test for a condition is too
complex, that might indicate your data model is overly complicated or lacks a needed index/
constraint. Testing shines a light on assumptions that might otherwise remain implicit. It forces
you to define what “correct” data means. This can lead to introducing formal schema elements
(like Neo4j constraints on keys or required properties) or refactoring how data is stored to make
it more consistent. In this way, tests not only catch problems – they can influence a cleaner design
upfront. It’s analogous to how writing unit tests often guides developers to write more modular,
pure functions.

In summary, data tests transform the way you manage a Neo4j graph: from a fragile, trust-based
approach to a robust, confidence-based approach. With them, you gain immediate insight into any
change , documented knowledge of your data’s rules , and the ability to move fast without
breaking things. The next sections will explore how to implement data tests in practice and integrate
them into your workflow.

Implementing Data Tests: Architecture and Workflow

Adopting data tests in your Neo4j environment involves both tooling and process changes. Here we
outline a practical workflow and architectural considerations to get started.

8

5

•

3

9

3

•

1 8

4

https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=,world%20use%20case%20we%20encountered
https://docs.diniscruz.ai/2025/02/10/second-stories__from-three-mile-island-to-cybersecurity.html?trk=public_post_comment-text#:~:text=code%20review%20or%20testing%20miss,the%20second%20story%20might%20reveal
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=The%20key%20insight%20is%20that,test%20makes%20the%20next%20code
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=Ephemeral%20Test,to%20testing%20often%20operate%20in
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=The%20key%20insight%20is%20that,test%20makes%20the%20next%20code
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=practice,infrastructure%20and%20developer%20experience%3A%20if
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=,world%20use%20case%20we%20encountered

1. Define Expected Conditions (What to Test)

Begin by capturing the implicit assumptions and rules about your data. These often come from business
requirements, data model documentation, or simply your team’s understanding of how the graph
should be structured. Some tips for defining test conditions:

Brainstorm Invariants: Sit down with your team and list statements that should always be true
about your graph. For example: “Each Account must be linked to exactly one Customer”, or “A Task
with status ‘Completed’ must have a completed_date property set”. These invariants will become
assertions in tests.
Use Past Incidents: Think of any data issues you’ve encountered before. If, say, there was an
incident where someone accidentally created duplicate “Admin” roles, extract a rule: “No two roles
with the same name in the same department” could be a test.
Leverage Constraints and Documentation: If you’ve set up Neo4j constraints (unique or node
property existence constraints), those are obvious things to mirror in tests (in case someone
disables a constraint or to double-ensure). Also, if you have an ER diagram or data dictionary,
use it to derive tests (e.g., required vs optional properties, valid ranges of values, etc.).
Prioritize by Impact: You don’t have to test everything at once. Focus on the most mission-
critical parts of the graph – where an error would be very damaging or where changes are
frequent. Start there, then expand.

Document these expectations, as they effectively define the “schema” of your graph in test form. This
list will guide what tests to write.

2. Set Up a Test Environment (Ephemeral Neo4j Instances)

To run automated tests, you need an environment where your Neo4j data can be accessed (and
possibly manipulated) without affecting production. There are a few strategies:

Ephemeral Test Instances via Docker or Testcontainers: One common approach is to spin up
a fresh Neo4j instance during testing. For example, using Docker: you can launch a Neo4j
container in a GitHub Actions workflow or in your local test run. Tools like Testcontainers provide
programmatic control to start a Neo4j database just for the duration of the tests (and then tear it
down). This ephemeral instance starts empty (or with a baseline dataset you provide) and is
isolated from production. It’s essentially the equivalent of an in-memory database for tests, but
since Neo4j is not in-memory by default, Docker is the stand-in. Modern CI pipelines handle this
well – you can even use Neo4j’s official Docker image with bolt port exposed for your test code to
connect.

On-Demand Cloud Instances: Neo4j’s AuraDS (Graph Data Science) is an example of an on-
demand ephemeral compute environment – essentially spin up a graph analytics instance
when needed and shut it down afterwards. While AuraDS is more for running algorithms, one
can imagine using cloud automation to spin a Neo4j cluster for testing. If your organization uses
cloud infrastructure (AWS, etc.), you could automate deployment of a Neo4j test instance (maybe
using Terraform or CloudFormation templates) that stands up, loads data, runs tests, then is
destroyed. Serverless paradigms are making this easier. The key is that cost is incurred only
when tests run, aligning with a serverless philosophy (zero cost when not in use) .

In-Memory Graphs (for Unit Tests): For certain checks, you might not need a full Neo4j engine.
If you have a small subgraph or a function that manipulates data, you could use an in-memory
graph library or Neo4j’s embedded mode (if using Java, Neo4j can run embedded). Dinis Cruz

•

•

•

•

•

•

10

•

5

https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde#:~:text=,DB%20is%20not%20being%20used

introduced MGraph-AI, a memory-first graph database that keeps data in memory and uses JSON
for persistence . The motivation is to have a lightweight graph DB that can run in
serverless environments and be extremely fast for AI and testing use cases. Such an approach
could theoretically allow you to instantiate a graph inside a test process, run checks, and dispose
of it with minimal overhead. While our focus is on Neo4j, it’s worth noting that memory-first or
ephemeral graph solutions are emerging to facilitate exactly these scenarios – quick spin-up,
zero-cost when idle, easy versioning and diffing of graph data .

Staging Database: Another environment is a long-running “staging” or “test” Neo4j instance
that is a mirror of production structure (and perhaps a subset or obfuscated copy of data). Your
CI could deploy changes to this staging DB and run data tests there before promoting changes
to production. This is more traditional and requires maintaining that staging environment, but
some teams find it convenient especially for integration tests that involve both application and
DB.

Regardless of approach, the goal is isolation. Tests should not risk altering real data, and ideally, they
should run on a fresh known state so they are deterministic. Ephemeral instances give you that
determinism – every test run starts from the same baseline, so if a test fails, it’s due to the code/data
change, not leftover state.

3. Load Data for Testing

Depending on what you’re testing, you need to prepare the test database with appropriate data. There
are a couple of patterns:

Synthetic Small Dataset: Create a minimal dataset that still reflects the structure of your
production data. This could be done via seeding scripts. For example, you might check in a
Cypher script (or use the Neo4j seed CSVs) that creates a handful of nodes and relationships
covering typical cases (and edge cases). This runs at the start of your test suite to set up the
graph. The advantage is full control – you know exactly what’s in the graph.
Subset or Sample of Production Data: In some cases, you might pull a sample of real data into
the test instance. For example, export a few thousand nodes and relationships from prod
(perhaps anonymized if sensitive) and use that as a starting point. This can be useful to catch
issues that only real data distributions would reveal.
Migration Scripts: If you’re testing a migration or update, your test might start with a snapshot
of yesterday’s database (or construct a state representing the “before” scenario), then apply the
migration procedure or Cypher, then run tests to see if the post-migration state is correct. This is
analogous to testing a database migration in SQL—apply the migration in a test DB and verify
expected outcomes.
No Data (for certain tests): Some tests might assert global conditions even on an empty graph
(like ensuring that applying a certain constraint doesn’t error out). But generally you’ll have some
data loaded.

For PyTest, you can use fixtures to handle database setup/teardown. For instance, a
@pytest.fixture could connect to Neo4j, load the sample data (perhaps by executing a predefined

Cypher script or using the Neo4j Python driver to create nodes), and yield a session to the tests. After
tests, it can wipe the data or drop the container.

The key here is to ensure the data represents the scenarios you want to test. It doesn’t always have to
be large – often a few nodes and relationships are enough to validate a rule. But make sure to include

11 12

13

•

•

•

•

•

6

https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde#:~:text=I%27m%20excited%20to%20share%20a,semantic%20web%2C%20and%20serverless%20applications
https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde#:~:text=MGraph,the%20reliability%20of%20persistent%20storage
https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde#:~:text=could%20support%20use%20cases%20like%3A

edge cases (e.g., a user with no orders, an order with multiple products, etc., if those are relevant
cases).

4. Write the Tests (Using PyTest and Neo4j Driver)

With environment and data in place, writing the tests is straightforward for anyone familiar with unit
testing. Let’s illustrate with Python’s PyTest, which is a popular choice:

First, install the Neo4j Python Driver (the official one, e.g., neo4j package) or a library like Py2neo.
Then in your test code, you’d typically have something like:

from neo4j import GraphDatabase

import pytest

Example fixture to get a Neo4j session

@pytest.fixture(scope="module")

def neo4j_session():

uri = "bolt://localhost:7687" # for Docker container or local Neo4j

auth = ("neo4j", "test") # example credentials

driver = GraphDatabase.driver(uri, auth=auth)

Setup: load sample data if needed

e.g., driver.session().run("CREATE (:User {id:1, name:'Alice'})-

[:FRIEND]->(:User {id:2, name:'Bob'})")

yield driver.session()

Teardown: optionally wipe data or close session

driver.close()

Now a sample test using this session:

def test_no_orphan_users(neo4j_session):

No User node should be completely disconnected (orphan) in the graph

result = neo4j_session.run(

"MATCH (u:User) WHERE size((u)--()) = 0 RETURN count(u) AS

orphanCount"

)

orphan_count = result.single()["orphanCount"]

assert orphan_count == 0, f"Found {orphan_count} orphan User nodes,

expected 0."

This test matches any User node with no relationships ((u)--() pattern finds any relationship). It
returns the count of such nodes, and we assert it should be zero. If someone, say, created a User
without linking it to anything when our rules say every user should have at least one connection (maybe
to a Profile or Group), this test would fail. The message will tell us how many orphans it found.

Another example:

def test_unique_emails(neo4j_session):

No two User nodes should share the same email

7

cypher = """

 MATCH (u:User)

 WITH u.email AS email, count(u) AS cnt

 WHERE email IS NOT NULL AND cnt > 1

 RETURN email, cnt

 """

result = neo4j_session.run(cypher).data()

assert result == [], f"Duplicate emails found: {result}"

Here we aggregate users by email and look for any with count > 1. The test expects an empty list (no
duplicates). If any duplicates exist, the result list will contain entries like {"email":

"alice@example.com", "cnt": 2} and the assertion will fail, printing those duplicates. This
immediately flags a data quality issue that could be serious (maybe our unique constraint wasn’t in
place or a data import bypassed it).

One more example for a relationship expectation:

def test_all_orders_have_customer(neo4j_session):

Every Order node should be linked to a Customer

result = neo4j_session.run(

"MATCH (o:Order) WHERE NOT (o)-[:PLACED_BY]->(:Customer) RETURN

count(o) AS orders_without_customer"

)

count = result.single()["orders_without_customer"]

assert count == 0, f"{count} Order(s) found without a Customer."

This will catch any Order that isn’t linked to a Customer via the PLACED_BY relationship. If
someone accidentally broke some connections, this test shines a light on it.

Test Organization: It’s wise to organize tests by feature or data domain. For example, have one test
module for User invariants, another for Order logic, etc. Use descriptive test function names
(PyTest will output them) like test_user_must_have_profile or test_no_self_friends (if you
want to ensure no user befriends themselves). This makes it easy to pinpoint what failed.

Running tests: Running pytest will execute these. If you have the Neo4j instance running and the
fixture is properly set, they will connect and validate the conditions.

5. Integrate Tests into CI/CD Pipeline

To truly reap the benefits, integrate these tests into your continuous integration pipeline. Using GitHub
Actions as an example, your workflow YAML might include:

A service container for Neo4j. GitHub allows adding services like:

services:

neo4j:

image: neo4j:5.8

ports:

- 7687:7687

•

8

env:

NEO4J_AUTH: neo4j/test

This would start a Neo4j 5.8 container accessible at bolt://localhost:7687 with username neo4j and
password test . The test code should match those credentials.

Steps to check out code, install dependencies (including neo4j driver), and run the tests:

- uses: actions/checkout@v3

- uses: actions/setup-python@v4

with:

python-version: '3.10'

- run: pip install -r requirements.txt # which includes neo4j, pytest, etc.

- run: pytest -v

The pytest step will execute tests, connecting to the Neo4j service. If any test fails (non-zero exit
code), the action fails, which by design will stop the deployment or merge (if you use required status
checks).

If your tests require seeding data into Neo4j before running, you have a few options:
Use the initScripts feature of the Neo4j Docker image (it allows mounting a script that runs
on startup).
Or run a step before pytest that uses cypher-shell to run a seed Cypher script.

Or, as in the fixture above, have the test itself create what it needs (though that might mix test
logic with setup, which is fine for small scales).

Parallelization: If you have many tests, you could potentially parallelize them by using multiple
Neo4j instances or splitting tests into groups. However, often data tests are not extremely
numerous (compared to thousands of unit tests for code), so running sequentially is usually fine.

Frequency: Ideally, run data tests on every push or pull request. At minimum, run them nightly
on the main branch if they are too slow for every PR. The more frequently they run, the sooner
you catch issues. If some tests are slow (e.g., scanning a large database), you might schedule
those for nightly and keep the critical fast checks on each commit.

By embedding this into CI, you enforce a culture: if a data test fails, that change cannot proceed.
This is exactly like a failing unit test preventing a build. It might feel strict, but it ensures graph integrity
is not an afterthought. Developers soon learn to run the test suite before pushing to avoid broken
builds, thus catching issues locally.

For those practicing Continuous Deployment, you could even hook data tests to run on a production
clone before final deployment, giving an extra gate to prevent bad migrations from affecting live users.
Some teams run a final suite of tests after deployment on the actual production (in read-only mode) to
verify everything is as expected, rolling back if not. This depends on your risk tolerance and deployment
model.

•

•
•

•

•

•

•

9

6. Simulate Changes in Transactions (Advanced “Test-Then-Commit”)

An interesting advanced strategy, as mentioned in the concept discussion, is to simulate a database
change within a transaction and validate it before committing. Neo4j transactions (via the driver or
APOC triggers) can be used to do this in a controlled way:

Imagine you have a script that will make a set of changes (like a Cypher script to reassign all users from
one department to another). Instead of running it directly, you could write a small harness:

with driver.session() as session:

with session.begin_transaction() as tx:

1. Perform the intended changes in this transaction

tx.run(... your updating cypher ...)

tx.run(... maybe more updates ...)

2. Run crucial tests/queries within the transaction

result = tx.run("MATCH (d:Department {name:'OldDept'}) RETURN

count(d) AS cnt").single()

assert result["cnt"] == 0, "OldDept still has members!" # example

check

3. If all assertions pass, commit; if any fail, rollback

tx.commit() # will commit if this line is reached

If an assertion fails, you’d .rollback() or simply not commit (the with block will roll back if not
explicitly committed). This pattern effectively lets you “dry-run” the change. The challenge is that you
have to encode the checks in the application code (or call out to your test suite). It might not be feasible
for every change, but for especially sensitive operations, this approach can prevent mistakes from ever
hitting the database. It’s akin to a database trigger that validates data, but implemented in the app
layer since Neo4j’s triggers (via APOC) are not usually used for complex test logic. In the future, we
might see more support for conditional commits or validation procedures in graph databases. For now,
this is a pattern to implement manually if needed.

7. Monitor and Maintain Tests

Once data tests are in place, treat them as a living part of the project:

Review Tests in Code Reviews: Whenever someone proposes a change that affects the data
model, ask, “do we have a test for this?” If they modify or add a feature, ensure new tests
accompany it if it changes assumptions. For example, if we introduce a new relationship type,
perhaps add a test that validates its usage (e.g., no duplicate of that relationship, or that it
always connects specific node types).
Keep Tests Updated: If a test starts failing because the underlying rule changed (e.g., we
decided that orphan User nodes are allowed in some cases now), then update or remove that
test accordingly. Don’t just ignore failing tests – they either signal a real problem or the test
needs adjustment to the new reality. This is similar to how code tests evolve: a failure is either a
bug in the code or the test is asserting an outdated requirement.
Metrics: Some teams measure coverage of tests. It’s harder to quantify “data test coverage”
since it’s not line-based. But you can track how many invariants you’ve captured and periodically
brainstorm if there are gaps. One shouldn’t obsess over metrics (as Dinis notes, focusing purely
on coverage percentage can miss the point), but it’s useful to maintain a checklist of
important rules and ensure each is enforced somewhere (by either a test or a DB constraint).

•

•

•

1

10

https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=practice,infrastructure%20and%20developer%20experience%3A%20if

Continuous Improvement: Each incident or bug that wasn’t caught by tests is an opportunity.
Ask “could a test have caught this?” If yes, write it. Over time, your test suite will become more
comprehensive, and you’ll experience fewer incidents. This mirrors the iterative improvement in
code testing – eventually you cover most critical paths. Dinis’s approach of “bug-first testing” is
valuable here: start your testing by addressing known bugs/issues first . That guarantees that
your initial tests have high relevance (they’re preventing something real that happened or
almost happened). Then expand to more speculative or general tests.

By implementing the above, data tests become a seamless part of your Neo4j development process.
Developers will get used to writing a new test whenever they add a feature or fix a bug, just as they do
for application logic. Next, we’ll explore some concrete scenarios and case studies of data tests, and
how this practice can transform the reliability of graph-powered applications.

Example Data Tests and Use Cases

To ground the discussion, let’s walk through a few realistic scenarios where data tests would prove
invaluable. These examples also serve as patterns you can adapt to your own Neo4j projects.

Ensuring Mandatory Relationships Exist: Consider a social network graph where (:User)-
[:FRIEND]->(:User) relationships represent friendships. Suppose a business rule says every
User should have at least one friend (perhaps isolated users should be flagged for
recommendations). A data test can enforce this: No User nodes with zero FRIEND relationships. The
test (as we showed earlier) queries for any user with no -- degree and expects to find none

. If a user without friends is valid but should trigger some alternate handling, the test could
be adjusted to allow a small number or at least alert when above a threshold. This kind of test
prevents scenarios where, for example, a batch user import forgot to connect the users, leaving
many isolated nodes.

Validating Graph Shape After a Migration: Imagine you had an EMPLOYEE node that used to
have a property department_name , and you refactor your model so that employees are
connected to a Department node instead (normalizing that out). You write a migration to
create (:Department) nodes and replace employee.department_name with
(:EMPLOYEE)-[:IN_DEPARTMENT]->(:Department) . How do you verify it worked? Data

tests can be written for both the intermediate and final states:

Before migration (perhaps in a pre-migration test), ensure that every Employee has a
department_name (no blanks) and that a corresponding Department node will be created.

After migration, test that:

No Employee has department_name property anymore (should be removed).
Every Employee now has exactly one outgoing IN_DEPARTMENT .
The number of distinct Department nodes matches the distinct department names that
existed before (ensuring no data loss or duplicates).
No unexpected relationships or nodes were created. These tests can run in a staging
environment as you refine the migration script. If something is off (say one department
didn’t get created due to a typo in name), a test fails, letting you fix the migration and run
again before you migrate production. This is a controlled way to do graph refactoring. It
mimics how one would test a SQL migration by applying it to a test database and
verifying schema and data.

•

14

•

15

•

•

•

◦
◦
◦

◦

11

https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=Instead%20of%20writing%20tests%20just,actual%20issues%2C%20not%20theoretical%20problems
https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde#:~:text=Every%20single%20one%20of%20those,or%20not

Cross-Entity Consistency: In a knowledge graph scenario, you might have different entity types
with relationships that must remain consistent. For instance, let’s say you have Person nodes
connected to Company nodes by :WORKS_FOR . You also have a separate relationship
:MANAGES where a Person can manage a Company (perhaps as part of an ownership or

board relationship). You have a rule: if a Person manages a Company, they must also work for that
Company. A data test can be written: find all patterns where (p:Person)-[:MANAGES]-
>(c:Company) but no (:WORKS_FOR) from p to c exists, and assert none found. This catches
any inconsistency where someone was linked as a manager without being an employee.
Conversely, you might also ensure no one has both a WORKS_FOR and MANAGES to two
different companies simultaneously if that’s disallowed (or whatever your rules dictate).
Essentially, anytime you have multi-relationship constraints (“if A then B must also hold”), data
tests are a natural solution.

No Contradictory Data: Graphs can sometimes accidentally encode contradictory facts
(especially if merging data from multiple sources). For example, a security knowledge graph
might have a rule: a single Server node cannot simultaneously be tagged as Production and
Decommissioned . If these are properties or labels, a test can ensure no node has both. If they

are relationships (maybe USES vs USED_BY indicating active vs retired status), you’d test no
node participates in both active and retired relationships. In Neo4j, such contradictions might
not throw an error, but they’re logically wrong for your domain – tests can catch them early. This
is analogous to a constraint in a relational DB (like a CHECK constraint), but since Neo4j doesn’t
have CHECK constraints, your test fills the gap.

Graph Algorithm Pre-checks: If you plan to run graph algorithms (like PageRank or community
detection via GDS), those often have assumptions (e.g., no negative weights, or graph is
connected, etc.). Data tests can verify assumptions before running expensive algorithms. For
example, if running a shortest path algorithm that requires positive weights on relationships,
have a test that all :ROAD relationships have a distance > 0 . This way, you don’t discover a
problematic data point only when the algorithm fails or produces nonsense.

Performance and Index-related Checks: While not a “data quality” test per se, you can write
tests to ensure indexes exist for certain queries. For example, if your app relies on looking up
nodes by an id property, you could query the existence of an index on that property via the
Neo4j system catalog and assert it’s present. Or test that the index selectivity is as expected
(maybe too advanced for most, but worth noting you can test meta-data too). However, these
veer into testing configuration rather than data; still, they help ensure your DB is in the expected
state (especially if your deployment involves creating indexes programmatically).

Each of these scenarios shows how data tests can be tailored to specific needs. The pattern is clear: for
any guarantee or rule you want in your data, write a query that would find violations of that rule, and
assert that the query returns nothing (or returns the expected count/value). This essentially flips the
perspective: instead of waiting for a user or an application to stumble upon bad data, you proactively
search for it in a controlled way.

Notably, these tests also serve as human communication. If new team members wonder “can a Person
manage a Company they don’t work for?”, the test suite answer is “there’s a test failing if that happens,
so apparently it’s not allowed.” In this way, tests complement documentation and even act as up-to-date
specs. As Dinis wrote, “this isn't just testing; it's knowledge preservation in code form” – a sentiment
highly relevant to capturing domain rules in a test suite.

•

•

•

•

15

12

https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde#:~:text=Every%20single%20one%20of%20those,or%20not

Integration with Development Practices

For data tests to be effective, they should become an integral part of your development and DevOps
practices. Here’s how to weave data testing into the fabric of your workflow and company culture:

Test-Driven Development (TDD) for Data: We often think of TDD in terms of writing a failing
unit test, then writing code to pass it. A similar approach can be taken for data. For instance, if
you’re about to implement a new feature that changes the graph, start by imagining what could
go wrong or what should always be true after the change – and write tests for those. Suppose
you’re adding a feature where users can form Teams (a new node label). You might write a data
test ahead of the implementation like: “if a Team exists, it should have at least one User
member” (to avoid empty teams). That test will initially fail if you create a Team with no
members, which guides you to enforce membership rules in your implementation. This is
speculative TDD, but it sets a quality bar from the outset.

Bug-First Testing Mindset: Embrace what Dinis calls “start with passing tests (TDD for bugs)” .
When a bug is found in the data or a data-related error occurs in the application, the first
response should be to write a test that would have caught it. For example, imagine a bug where
a financial transaction graph ended up with a cycle (e.g., money transferring in a loop between
accounts due to a logic error). After fixing the code, write a data test that looks for cycles in the
transaction relationships and fails if any are found. Initially, before the fix, that test would pass in
the sense that it detects the bug’s presence (some tests can be written in an inverted way to pass
when the bug exists, then flipped when fixed). But ultimately, once the bug is fixed, the test
should pass only if the data is clean. This way, if anything ever causes a regression (maybe
someone reintroduces a flawed algorithm later), the test will catch it. By systematically adding
tests for each bug, you build a robust suite that guards against exact repeats of all those bugs

. It’s like inoculating your system against known diseases.

Continuous Data Quality in CI/CD: Make it a norm that pipelines don’t go green unless data
tests pass. This might involve not just application code changes, but also data pipeline changes.
For example, if a data engineer modifies the ETL that populates Neo4j, they should run the test
suite to see if any assumptions were broken. This encourages more careful, quality-focused
work. It also provides rapid feedback to the data engineer – rather than waiting for an analyst to
notice something off in a report next week, the pipeline fails immediately if the new ETL violates
a test (say it forgot to fill a mandatory field). In CI, treat data tests failures with the same severity
as unit test failures.

Collaboration Between Roles: Data quality is a shared responsibility. In many organizations,
software engineers, data engineers, and even data scientists or analysts might all be interacting
with the Neo4j graph (adding data, running algorithms, building queries). All of them can
contribute to the test suite. Analysts might write tests for the correctness of metrics (e.g., “the
number of active users as computed in the graph equals the number in the analytics DB”), data
scientists might add tests for the presence or distribution of certain data needed for models
(e.g., “at least 1000 users have more than 5 connections” to ensure enough graph centrality for a
recommendation algorithm), and engineers will write tests for structural integrity. By
encouraging cross-functional input into data tests, you cover more ground. It also educates each
group: analysts see the engineering rules, engineers see the business logic checks analysts care
about.

•

• 16

17

14

•

•

13

https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde#:~:text=Back%20in%202016%20I%20did,fails%20when%20the%20bug%20exists
https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde#:~:text=This%20is%20a%20super%20powerful,doesn%27t%20break%20the%20CI%20Pipeline
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=Instead%20of%20writing%20tests%20just,actual%20issues%2C%20not%20theoretical%20problems

Reviewing Data Model Changes with Tests: When proposing a change to the graph model (like
adding a new label or relationship type), include in your design proposal the tests that will
validate it. This is analogous to proposing API changes with accompanying unit tests. It forces
thinking through how the new piece will be governed. For example: “We plan to add a Mentor
relationship from Person to Person. We will add tests to ensure no person has more than 5 direct
mentees (to reflect policy), and no mentorship cycles form.” Stating this upfront sets clear
expectations and the tests become a contract for that feature.

Use Version Control for Data Tests and possibly Data Snapshots: Keep your test code in the
same repo as the application code or queries that manage Neo4j. This way, tests version
together with changes. If you also have small seed datasets or Cypher files for testing, keep
those under version control too. They are part of the definition of correctness. Some teams even
version control migrations and test outputs, e.g., storing a JSON of expected counts that tests
compare against. That might be overkill, but the philosophy is everything that defines the
correctness of your data should be tracked and peer-reviewed.

Handling Test Failures: When a data test fails, treat it with the same analytical mindset as a
failing build or a production alert. Investigate: is it the result of a recent change? Did it uncover
an unknown issue in the data? Sometimes tests might fail due to something outside code
changes – for example, a data source changed format and an ETL brought wrong data in,
violating an invariant. In such cases, the test is acting as a monitoring system for data quality.
It’s a signal that needs attention. It might not be a “bug” in code, but perhaps an upstream issue
or changed assumption. Never ignore a failing data test by simply disabling it – that’s
equivalent to removing a smoke detector because it went off. Instead, understand why, update
the system or test if the assumption is no longer valid, and only then mark it green. This
discipline ensures the test suite remains trustworthy.

In practice, as this mindset takes root, you’ll notice a cultural shift: data quality becomes proactive
rather than reactive. Teams start to feel that the graph is under control and transparent. The surprise
factor of “when did this data get like this?!” diminishes, because the tests would have told you at the
moment it happened. Developers also gain a sense of pride and ownership over the data’s correctness,
not just the code’s correctness.

There is also an interesting side-effect: a comprehensive test suite can enable faster experimentation.
Suppose you want to try a new graph algorithm or a new way of linking data. You can implement it on a
branch, run the data tests – and if they all pass, you have quick reassurance that your experiment didn’t
break known rules. If some fail, you get immediate guidance on what you violated. This is analogous to
running unit tests to ensure a refactor didn’t break functionality. It lowers the barrier to change.

Finally, integrating data tests aligns well with modern DevOps and DataOps trends where continuous
monitoring and testing of data pipelines (often called Data Observability) is a hot topic. Many outages
or incidents in companies are due not to code bugs but to bad data getting in. By leveraging the same
testing philosophy from software, you’re effectively doing DataOps: treating data with the rigor of code.

•

•

•

14

Challenges and Considerations

While data testing is powerful, it’s important to acknowledge challenges and address common
concerns:

Evolution of Data and Tests: One might worry that as the graph evolves, the tests will
constantly need updating, which could be a maintenance burden. It’s true that tests encode
assumptions that might change. However, this is a feature, not a bug: it forces you to consciously
update expectations. When you intend to allow something that was previously disallowed, you
update or remove the test accordingly. Tests are living, just like the schema. The maintenance is
usually manageable if you write tests at an appropriate granularity. Also, having tests fail can be
an early warning that you changed something fundamental – maybe prompting a design review.
It’s better to adjust a test than to let silent data drift go unnoticed. The key is to avoid writing
overly brittle tests tied to incidental details. Focus on fundamental rules. Dinis Cruz warns about
the "metric trap" of testing – writing tests just to satisfy coverage can lead to meaningless
tests that add work without value. Instead, each test should have a clear reason to exist (a
specific rule or bug behind it). That way when it fails, it actually means something significant.

Performance of Tests: Running heavy queries on a large Neo4j graph can be slow, and if you
have many tests doing this, it could lengthen your CI pipeline. Some mitigations:

Optimize queries: Use indexes (add indexes in Neo4j for properties you frequently search in
tests, like email in the uniqueness test). Ensure your test queries themselves are efficient –
e.g., limit scope by labels and properties, avoid super-linear operations when possible. If a test
query is expensive, see if it can be rephrased or if an APOC procedure can help.
Test on sample data: For most structural checks, you don’t need the full production dataset. If
your tests run on a representative subset (which you load in the ephemeral test DB), they’ll run
fast. This requires maintaining that sample, but it can be automated (periodically refresh a
sample of prod data for testing).
Selective testing: You might mark certain tests as “long-running” and not run them on every
commit. For instance, you could have daily jobs that run the test suite against a large dataset,
while developers run a core subset on each commit. PyTest allows grouping with markers (e.g.,
@pytest.mark.slow).

Neo4j-specific: consider using the Neo4j Fabric or GDS for certain global checks if needed, but
that’s advanced. In most cases, careful Cypher is enough.

It’s worth noting that, in many domains, the number of invariants to test is not gigantic – maybe tens or
a couple hundred tests. Each might run in milliseconds to a second on small data, and seconds on
larger. So it’s often quite feasible. If your graph is truly huge (millions of nodes), you may need to get
clever (like run tests on aggregated info or using statistical sampling). But even then, having some tests
is far better than none.

False Positives vs. Real Issues: A failing test could indicate a real data problem or could simply
be a test that’s too strict or based on an outdated assumption. Teams need to investigate failures
promptly and diagnose which it is. In early stages, you might get a few false positives as you
calibrate the tests. Over time, you refine them. This is similar to how alerting in monitoring
works – you tune alerts to minimize noise. If a test is flapping (sometimes failing due to edge
cases that are actually acceptable), refine its logic or threshold. For example, maybe allow up to
1% orphan nodes if some are expected temporarily. Ideally, tests are binary, but you can
incorporate small tolerances if needed to avoid constant minor failures (while still highlighting
trends).

•

1

•

•

•

•

•

•

15

https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=practice,infrastructure%20and%20developer%20experience%3A%20if

Security and Privacy: If your data includes sensitive information, consider what your tests log
or output. A failing test might log an email address or a person’s name in CI logs, for instance.
Ensure this is acceptable or mask sensitive data in outputs. Also, if using production data for
testing, anonymize or secure it properly. Data tests themselves typically only read data (unless
creating a fixture dataset), so they are low-risk, but any handling of real data should follow your
organization’s compliance rules.

Tooling Limitations: Unlike unit testing where mature frameworks abound, data testing is still a
developing practice. We leveraged generic test frameworks (PyTest) and the Neo4j driver. There
isn’t (at the time of writing) a dedicated Neo4j data testing framework that, say, automatically
generates tests or has a DSL for common patterns. The community is starting to build examples
(e.g., the NBi extension for Neo4j allowed writing test cases in XML to validate Cypher queries

). Data build tool (dbt) popularized the idea of SQL data tests by allowing assertions as
first-class items. We might see similar convenience in graph tooling in the future. For now,
adopting data testing might require some custom boilerplate (like writing your own fixtures and
queries). The good news is that it’s all standard code – no magic. If your team is comfortable with
Cypher and a programming language, the learning curve is not steep.

Scope Creep: It can be tempting to use the testing setup to do other things – like generating
reports or migrating data. Be careful to keep tests focused. For example, writing a “test” that
outputs all orphan nodes as part of a report is useful, but belongs perhaps in a data quality
dashboard rather than the pass/fail test suite. Keep the CI tests binary (pass or fail) and quick. If
you want to do deeper analysis (like listing all violations), you can still do that in a dev
environment or a daily job, but it might not be a blocking test (or if it is, ensure it’s manageable).
Essentially, maintain the distinction between monitoring and testing: tests should automatically
verify known conditions; monitoring can watch for unknown conditions or trends (using more
complex analysis, possibly outside the test suite).

Ephemeral vs Long-lived Data Consideration: Neo4j is often used for long-lived knowledge
graphs that accumulate data over years. One challenge is that early in a project, certain
invariants hold, but as the use cases expand, those might no longer hold. Data tests might then
start failing not because of a bug, but because the system intentionally grew beyond original
assumptions. This is fine – it signals to revisit your assumptions. A concrete example: you start
with the rule “each user has exactly one role”. Later, you introduce multi-role feature, now the
test “exactly one role” fails. The resolution is to update the test to perhaps “each user has at least
one role” or a new test per role type. This is part of the natural evolution; tests guide you to
consciously adapt. Just be aware that such moments will come, and treat them as part of
development (update tests as part of the feature change).

Despite these challenges, teams that have adopted data testing report significant improvements in
stability and confidence. Much like the initial pushback against unit testing (“it’s too much work to write
tests”) was overcome by the realization of long-term benefits, data testing requires an upfront
investment but pays off by catching complex issues that would be extremely hard to troubleshoot
manually. Every hour spent writing a data test could save many hours of debugging or firefighting
down the road.

Conclusion: Embracing a Testing Culture for Data

The advent of data testing for Neo4j represents a maturation in how we manage graph databases. In
the early days of Neo4j (and NoSQL in general), agility often trumped rigor – we enjoyed how easily we

•

•

18 19

•

•

16

https://seddryck.wordpress.com/2018/04/27/automating-the-testing-of-neo4j-cypher-queries-with-nbi/#:~:text=Since%20five%20years%2C%20you%20can,extension%20is%20hosted%20on%20GitHub
https://seddryck.wordpress.com/2018/04/27/automating-the-testing-of-neo4j-cypher-queries-with-nbi/#:~:text=%3Ctest%20name%3D,resultSet

could add new nodes or relationships on the fly. But as systems grow and become mission-critical, that
freedom needs to be balanced with controls. This white paper makes the case that automated tests
are the optimal control mechanism: they preserve agility (you can still evolve the model quickly) while
adding confidence and safety. Far from being a tax on development, a good test suite accelerates
development by enabling bold changes with immediate feedback .

By treating the graph’s health as code, we unlock several positive outcomes. We no longer operate in
the dark, hoping that data remains consistent – we have continuous assurance. We no longer rely on
memory or manual scripts to check for conditions – we have living documentation and automated
enforcement of rules. And we no longer react to data catastrophes after the fact – we catch them at
inception. It’s the difference between having an active immune system versus only treating illnesses
once they’ve fully manifested.

Crucially, implementing data tests fosters a culture of learning and improvement. Each mistake or
incident becomes a trigger to strengthen our system (through a new test or rule), rather than just a
one-time fire to put out. This aligns with the “second story” philosophy: instead of blaming human error,
we improve the system that allowed the error . If an engineer ran a bad query that broke something,
the takeaway is not “don’t run bad queries” (first story), but “let’s add checks so that query couldn’t do
damage or would be caught immediately” (second story). Over time, the system becomes more robust
and the team more knowledgeable about the data’s behavior.

Looking beyond Neo4j, we anticipate that data testing will become a standard practice across
databases. In the same way that few would argue against having unit tests for a large software project
today, in a few years it may be seen as irresponsible to deploy a complex database without a suite of
data tests guarding it. Early adopters (like those using dbt for data warehouses or custom frameworks
for graphs) are already reaping benefits, such as 95% code coverage with GenAI-assisted test
generation in one case . Those efforts show that reaching high levels of automated coverage is
feasible and advantageous. The Neo4j community specifically can take inspiration from these trends
and tools, adapting them to Cypher and graph structures.

Implementing data tests is not without effort – it requires design, coding, and maintenance work – but
the return on investment is clear. As each new test is added, the compound benefit grows: “every new
test makes the next change safer and faster” . Teams gain a virtuous cycle of confidence and velocity
where they can deliver features or changes faster precisely because they know the safety net is there.
This flips the old misconception that testing slows you down; in reality, lack of testing leads to so many
firefights and cautious, incremental steps that you lose far more time. As Dinis succinctly put it,
“automated testing is not a tax on development speed – it is a powerful enabler of sustainable velocity, and its
absence incurs a far greater cost in the long run” .

In conclusion, data tests for Neo4j bring discipline to the wild west of graph data without
sacrificing the creativity and power that graphs offer. They allow organizations to scale up their
graph databases with assurance that quality won’t degrade. Whether you are maintaining a knowledge
graph for cybersecurity, a social network, a recommendation engine, or any graph-backed system,
adopting data testing will improve reliability and trust in your data. Neo4j developers and architects
who champion this practice will find that their graphs become as reliable as the applications that use
them, creating a full-stack culture of quality.

The journey to full data test adoption can start small – pick a few critical rules and write tests for them.
You’ll likely catch something unexpected early on, proving the value. Then build on that success
iteratively. With each added test, you’re not just preventing a specific issue; you’re sending a message
that data integrity matters and can be systematically ensured. In the era of AI and advanced analytics,

4

5

20

4

21

17

https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=risks%20being%20skipped%20later,automating%20tests%20for
https://docs.diniscruz.ai/2025/02/10/second-stories__from-three-mile-island-to-cybersecurity.html?trk=public_post_comment-text#:~:text=code%20review%20or%20testing%20miss,the%20second%20story%20might%20reveal
https://www.linkedin.com/posts/diniscruz_the-hidden-cost-of-ephemeral-testing-activity-7340018101876391937-Dot2#:~:text=PDF%3A%20The%20Hidden%20Cost%20of,nice%20benefits%20of%20publishing%20my
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=risks%20being%20skipped%20later,automating%20tests%20for
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=like%20Wallaby,cost%20in%20the%20long%20run

where graph databases play an expanding role, having clean, consistent, and well-tested graph data is a
competitive advantage. It means you can feed your AI algorithms with confidence, merge new data
sources quickly, and pivot your data model to meet new needs without fear.

In the end, the practice of data testing elevates our stewardship of data. Much as a rigorous QA
process improves software, a rigorous data testing process improves the knowledge and insights we
derive from that software. Neo4j, as powerful as it is, benefits greatly from this added layer of quality
control. By embracing data tests, we ensure that our graph-driven solutions remain robust, our team
learns from each change, and our projects can move “fast and safe” – unlocking the full potential of
graph technology in a reliable way. This alignment of speed and quality is the hallmark of mature
engineering, and it’s exciting to bring that into the graph database realm.

The Hidden Cost of Ephemeral Testing and the Case for Automation - Dinis Cruz -
Research Hub
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?
trk=public_post_comment-text

Beyond 100% Code Coverage: How GenAI and "Bug-First" Testing Transform Software
Quality
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre

Second Stories: From Three Mile Island to Cybersecurity - Dinis Cruz - Research Hub
https://docs.diniscruz.ai/2025/02/10/second-stories__from-three-mile-island-to-cybersecurity.html?
trk=public_post_comment-text

An Overview of Testing Options for dbt (data build tool) - Datacoves
https://datacoves.com/post/dbt-test-options

Introducing: MGraph-AI - A Memory-First Graph Database for GenAI and Serverless Apps
https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde

Start with passing tests (tdd for bugs), now (in 2024) with GenAI support
https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde

Automating the testing of Neo4j cypher queries with NBi | Ambiguity vs Information
https://seddryck.wordpress.com/2018/04/27/automating-the-testing-of-neo4j-cypher-queries-with-nbi/

PDF: The Hidden Cost of Ephemeral Testing and the Case for Automation | Dinis Cruz
https://www.linkedin.com/posts/diniscruz_the-hidden-cost-of-ephemeral-testing-activity-7340018101876391937-Dot2

1 3 4 9 21

2 7 8 14

5

6

10 11 12 13

15 16 17

18 19

20

18

https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=practice,infrastructure%20and%20developer%20experience%3A%20if
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=The%20key%20insight%20is%20that,test%20makes%20the%20next%20code
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=risks%20being%20skipped%20later,automating%20tests%20for
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=Ephemeral%20Test,to%20testing%20often%20operate%20in
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text#:~:text=like%20Wallaby,cost%20in%20the%20long%20run
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text
https://docs.diniscruz.ai/2025/06/15/the-hidden-cost-of-ephemeral-testing-and-the-case-for-automation.html?trk=public_post_comment-text
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=The%20real%20power%20of%20achieving,that%20seem%20easy%20or%20safe
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=The%20real%20power%20of%20achieving,that%20seem%20easy%20or%20safe
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=,world%20use%20case%20we%20encountered
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre#:~:text=Instead%20of%20writing%20tests%20just,actual%20issues%2C%20not%20theoretical%20problems
https://www.linkedin.com/pulse/beyond-100-code-coverage-how-genai-bug-first-testing-transform-cruz-0mpre
https://docs.diniscruz.ai/2025/02/10/second-stories__from-three-mile-island-to-cybersecurity.html?trk=public_post_comment-text#:~:text=code%20review%20or%20testing%20miss,the%20second%20story%20might%20reveal
https://docs.diniscruz.ai/2025/02/10/second-stories__from-three-mile-island-to-cybersecurity.html?trk=public_post_comment-text
https://docs.diniscruz.ai/2025/02/10/second-stories__from-three-mile-island-to-cybersecurity.html?trk=public_post_comment-text
https://datacoves.com/post/dbt-test-options#:~:text=tests%20are%20typically%20run%20during,Continuous%20Integration%29
https://datacoves.com/post/dbt-test-options
https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde#:~:text=,DB%20is%20not%20being%20used
https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde#:~:text=I%27m%20excited%20to%20share%20a,semantic%20web%2C%20and%20serverless%20applications
https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde#:~:text=MGraph,the%20reliability%20of%20persistent%20storage
https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde#:~:text=could%20support%20use%20cases%20like%3A
https://www.linkedin.com/pulse/introducing-mgraph-ai-memory-first-graph-database-genai-dinis-cruz-wxmde
https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde#:~:text=Every%20single%20one%20of%20those,or%20not
https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde#:~:text=Back%20in%202016%20I%20did,fails%20when%20the%20bug%20exists
https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde#:~:text=This%20is%20a%20super%20powerful,doesn%27t%20break%20the%20CI%20Pipeline
https://www.linkedin.com/pulse/start-passing-tests-tdd-bugs-now-2024-genai-support-dinis-cruz-pxnde
https://seddryck.wordpress.com/2018/04/27/automating-the-testing-of-neo4j-cypher-queries-with-nbi/#:~:text=Since%20five%20years%2C%20you%20can,extension%20is%20hosted%20on%20GitHub
https://seddryck.wordpress.com/2018/04/27/automating-the-testing-of-neo4j-cypher-queries-with-nbi/#:~:text=%3Ctest%20name%3D,resultSet
https://seddryck.wordpress.com/2018/04/27/automating-the-testing-of-neo4j-cypher-queries-with-nbi/
https://www.linkedin.com/posts/diniscruz_the-hidden-cost-of-ephemeral-testing-activity-7340018101876391937-Dot2#:~:text=PDF%3A%20The%20Hidden%20Cost%20of,nice%20benefits%20of%20publishing%20my
https://www.linkedin.com/posts/diniscruz_the-hidden-cost-of-ephemeral-testing-activity-7340018101876391937-Dot2

	Data Tests for Neo4j: Bringing Automated Testing to Graph Databases
	Executive Summary
	Introduction: The Need for Graph Data Testing
	What Are “Data Tests” in a Graph Database?
	Benefits of Data Testing for Neo4j
	Implementing Data Tests: Architecture and Workflow
	1. Define Expected Conditions (What to Test)
	2. Set Up a Test Environment (Ephemeral Neo4j Instances)
	3. Load Data for Testing
	4. Write the Tests (Using PyTest and Neo4j Driver)
	5. Integrate Tests into CI/CD Pipeline
	6. Simulate Changes in Transactions (Advanced “Test-Then-Commit”)
	7. Monitor and Maintain Tests

	Example Data Tests and Use Cases
	Integration with Development Practices
	Challenges and Considerations
	Conclusion: Embracing a Testing Culture for Data

