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Introduction and Motivation

Graph thinkers – those who naturally conceptualize information as networks of nodes and

relationships – can greatly benefit from on-demand graph analytics. Recently, we demonstrated

how a Large Language Model (LLM) could serve as an ephemeral graph database to help non-

programmers build and query a risk management knowledge graph using only natural language.

In that approach, the LLM acted as a transient graph engine: nodes and edges existed only in the

AI’s conversational context (no external database required). This lowers the barrier to entry – no

installation or query language needed – but comes with limitations: the “database” resets when

the AI session ends, and we rely on the LLM’s internal reasoning rather than a true graph query

engine.

In this white paper, we bridge that conceptual idea into a practical Neo4j implementation. We

show how to run the same cybersecurity risk graph scenario on ephemeral (temporary) Neo4j

instances. By “ephemeral,” we mean spinning up a Neo4j graph database on-demand, using it to

perform our analysis, and then tearing it down – much like the LLM’s transient memory, but now

with a real database. This approach provides the best of both worlds: the full power of a graph

database (with Cypher queries, persistence options, and graph algorithms) combined with the

flexibility of on-demand usage (no always-on server required). Crucially, it aligns with emerging

trends in cloud architecture – treating the database as a disposable, serverless component. As

described in our technical plan for ephemeral Neo4j on AWS, the idea is to pay for graph

processing only when it runs and shut everything down when done. Neo4j itself is moving in this

direction with offerings like Aura Graph Analytics, which provides on-demand, ephemeral

compute for graph algorithms.

Use Case: We will walk through a real-world example – modeling a cybersecurity risk

management scenario – in a step-by-step, workshop style. This is the same scenario initially built

with an LLM, now implemented on Neo4j. The scenario involves a “User accounts can be

compromised” risk, and expands to include causes (why the risk might happen), impacts

(consequences if it happens), controls (mitigations to prevent it), assets (systems affected), and

stakeholders (people responsible). By the end, we will have constructed a rich knowledge graph



that connects a technical IT risk to business-level consequences and owners. We’ll demonstrate

how to create this graph in Neo4j, visualize it, and query it to gain insights. All of this can be done

on a temporary Neo4j instance that you spin up just for this analysis – for example, using a

Docker container or a Neo4j Aura free tier instance – and discard afterward, achieving true on-

demand graph analytics.

Target Audience: This guide is aimed at Neo4j users, engineers, and graph enthusiasts. We

assume you have basic familiarity with Neo4j and Cypher, and we focus on the implementation

details of the ephemeral graph concept. The goal is to empower technical users to replicate the

agility of the LLM-based approach within a proper Neo4j environment. By following this

workshop, you can run complex graph transformations without maintaining a permanent

database server, and integrate the results into your workflows with full provenance and control.

From LLMs as Graphs to Neo4j on Demand

Before diving into the tutorial, it’s worth contrasting the LLM-as-graph approach with our Neo4j-

based approach:

In summary, using an LLM as a graph DB is like scribbling on a whiteboard that an AI holds up –

quick and flexible but temporary. Using an ephemeral Neo4j is like booting up a dedicated tool for

a task – a bit more effort to start, but you get a reliable engine for as long as you need it, then you

Ephemeral LLM Graphs: In the LLM approach, the graph lives in the model’s memory.

Users “create” nodes and relationships by prompting the LLM in plain English (e.g.

“Create a node called User and a node called Account Compromise”). The LLM interprets

and internally represents this structured data. The benefit is a completely natural

language interface – no Cypher or setup needed – which makes graph building

accessible to non-coders. However, this ephemeral graph is volatile and opaque. There’s

no persistent database to query with standard tools, and the fidelity of the graph (and

any query results) depends on the LLM’s correctness. Complex or large graphs may

exceed the context window limits of the model.

→

Ephemeral Neo4j Instances: In our approach, we spin up a real Neo4j database on

demand. This could be done locally (using a Docker container or Neo4j Sandbox for a

quick temporary instance) or in the cloud (using an orchestrated ephemeral instance as

described in our AWS architecture). The user will use Cypher queries to create nodes

and relationships (which requires some technical skill), but gains the accuracy and

power of Neo4j – including ACID transactions, indexing, Cypher query language, and

integration with graph visualization tools. The graph can be saved (if desired) or

exported, but by default we treat the database as throwaway: once the analysis is done,

we extract any results needed and shut the instance down. This means no ongoing

resource usage or cost when not in use, analogous to how the LLM’s graph vanished

after the conversation.

→



clean up. As we proceed, we’ll see how to practically create the same risk graph with Neo4j and

discuss the trade-offs and insights gained.

Tutorial: Building a Cybersecurity Risk Graph on an Ephemeral

Neo4j Instance

We will now recreate the cybersecurity risk scenario step-by-step in Neo4j. The scenario revolves

around the risk statement: “User accounts can be compromised.” We’ll start from this core risk

and progressively expand the graph to include impacts, causes, controls, assets, and

stakeholders, simulating a realistic threat modeling exercise. For each step, we provide the

Cypher queries to input the data and some guidance on visualizing or querying the results in

Neo4j.

Ephemeral Setup: To follow along, you can launch a fresh Neo4j instance in a few ways:

Locally via Docker: For example, run docker run -p 7474:7474 -p 7687:7687 -e

NEO4J_AUTH=none neo4j:5  to start a Neo4j database locally with no authentication. This is

quick and disposable – when you stop the container, the database is gone (ephemeral

storage).

Neo4j Sandbox or Aura: Alternatively, use the Neo4j Sandbox (a temporary cloud instance

provided by Neo4j) or Neo4j AuraDB Free. These give you a time-limited database online

without installation.

Cloud VM/Container: For a more automated ephemeral setup (as per our AWS architecture),

you could script the launch of a Neo4j container on AWS Fargate or an EC2 VM, load data,

and destroy it after – but for workshop purposes, a local Docker or Sandbox is simpler.

Once you have Neo4j running, connect to it (e.g., open Neo4j Browser at http://localhost:7474 if

using Docker locally). The Neo4j Browser provides a web interface where you can enter Cypher

queries, see textual results, and visualize graph data as nodes and relationships.

Note on Data Model: We will use labels to categorize nodes (e.g. Risk , Persona , Event ,

Impact , Control , Cause , Asset , Role , Incident ) corresponding to their roles in the scenario.

Relationships will have descriptive types (e.g. IMPacts , INVOLVES , LEADS_TO , MITIGATES , etc.).

This explicit schema is something we define as we go – similar to how the LLM inferred types on

the fly. In Neo4j, you can create nodes and relationships without a predefined schema, which

gives us flexibility to mirror the evolving graph thinking process.

Step 1: Initialize an Empty Graph

When using an LLM, we began by “initializing” the graph engine in the conversation (essentially

instructing the AI to start with a blank slate memory). In Neo4j, if you just started a fresh

instance, you already have an empty database. We should ensure no residual data is present

http://localhost:7474/


(especially if reusing a sandbox). You can execute a cleanup query to remove all existing nodes

and relationships (skip this on a fresh DB):

This will detach and delete all nodes in the database, giving us a true blank slate. Neo4j will

confirm by returning the number of nodes deleted. We are now ready to start adding our risk

data.

Step 2: Creating Nodes (Entities)

Our first task is to capture the basic entities from the risk statement “User accounts can be

compromised.” This statement implies a few key concepts:

A Risk node representing the overall issue (the fact that user accounts can be

compromised).

An Actor/Persona node for User (who is impacted by the risk).

An Event/Outcome node for Account Compromise (the kind of incident we fear).

In the LLM approach, we simply described these nodes in natural language and the AI listed

them. Here, we explicitly create them in Neo4j:

Run these queries (you can execute them one by one or all together). Neo4j will create three

nodes. Each node has a name  property and a label indicating its type. After creation, you might

verify the nodes exist:

This query fetches all nodes and lists their labels and names. You should see something like:

Labels Name

Risk User accounts can be compromised

Persona User

Event Account Compromise

MATCH (n) DETACH DELETE n;

// Create the core risk node

CREATE (r:Risk {name: "User accounts can be compromised"});

// Create related persona and event nodes

CREATE (u:Persona {name: "User"});

CREATE (e:Event {name: "Account Compromise"});

MATCH (n) RETURN labels(n) AS Labels, n.name AS Name;



At this stage, we have our primary entities, but they are isolated. In the Neo4j Browser’s graph

view, if you click the small circle icon next to each result row (or run a query returning the nodes),

you’ll see three separate nodes with no connections. The power of a graph comes from linking

these nodes with relationships, which is our next step.

Step 3: Establishing Basic Relationships

Now we will link the nodes to reflect the meaning of the risk statement. From “User accounts can

be compromised”, we can infer:

The risk impacts the User (if accounts are compromised, users are affected).

The risk involves an Account Compromise event (that’s the negative outcome described).

In Neo4j, relationships are directed and have a type. We’ll create two relationships:

1. (:Risk)-[:IMPACTS]->(:Persona)  to show the Risk impacts the User.

2. (:Risk)-[:INVOLVES]->(:Event)  to show the Risk is about the Account Compromise

event.

We can add these by matching existing nodes and creating relationships between them:

After running these, the database now has two relationships. We can ask Neo4j to show a

summary of the graph. For example:

(This query finds any relationship from the risk node to another node and returns the type and

target's name.) The result should list something like:

Risk: "User accounts can be compromised" — Relationship: IMPACTS — RelatedEntity:

"User"

Risk: "User accounts can be compromised" — Relationship: INVOLVES — RelatedEntity:

"Account Compromise"

In the Neo4j Browser graphical view, if you now visualize the Risk node with its neighbors (e.g. by

clicking on the Risk node and expanding relationships), you will see a mini network: the Risk node

connected to the User node and the Account Compromise node. This corresponds to the textual

MATCH (r:Risk {name: "User accounts can be compromised"}),

(u:Persona {name: "User"})

CREATE (r)-[:IMPACTS]->(u);

MATCH (r:Risk {name: "User accounts can be compromised"}),

(e:Event {name: "Account Compromise"})

CREATE (r)-[:INVOLVES]->(e);

MATCH (r:Risk {name: "User accounts can be compromised"})-[]->(x)

RETURN r.name AS Risk, type(last(relationships(path))) AS Relationship, x.name

AS RelatedEntity;



summary above. We’ve effectively structured the basic risk statement into a graph format. In the

LLM-based approach, this was done via conversation; here we did it with a couple of Cypher

commands.

This small graph is our starting point. Next, we will expand the graph in two directions:

downstream impacts (what happens if the risk materializes) and upstream causes (why the risk

might happen), followed by controls and context.

Step 4: Expanding the Graph – Adding Impacts and Consequences

In risk management, a single technical risk can cascade into multiple impacts. We will model the

consequences if “User accounts are compromised”. Based on our scenario, consider these

impact points:

Sensitive Data Exposed – if accounts are compromised, sensitive user/customer data could

be accessed by an attacker.

Breaks GDPR Compliance – exposure of personal data likely violates regulations (like

GDPR).

Financial Impact (~ \$500K) – the data breach and compliance fines could result in an

estimated financial loss of, say, \$500K.

Company Performance Risk – ultimately, such a breach can affect the company’s

performance (e.g., reputational damage, stock impact). We use this as a high-level business

risk node.

We will create nodes for each of these and then link them to depict the chain of consequences:

Account Compromise LEADS_TO Sensitive Data Exposed

Sensitive Data Exposed CAUSES Breaks GDPR Compliance

Sensitive Data Exposed RESULTS_IN Financial Impact (~ \$500K)

Breaks GDPR Compliance RESULTS_IN Financial Impact (~ \$500K) (regulatory fines

contribute to the financial loss)

Financial Impact (~ \$500K) CONTRIBUTES_TO Company Performance Risk

Let’s execute this in Cypher. We can do it in batches:

// Create impact and consequence nodes

CREATE (i1:Impact {name: "Sensitive Data Exposed"}),

(c1:ComplianceImpact {name: "Breaks GDPR Compliance"}),

(b:Impact {name: "Financial Impact (~ $500K)"}),

(tr:Impact {name: "Company Performance Risk"});

// Create relationships for the consequence chain

MATCH (e:Event {name: "Account Compromise"}),

(i1:Impact {name: "Sensitive Data Exposed"}),

(c1:ComplianceImpact {name: "Breaks GDPR Compliance"}),

(b:Impact {name: "Financial Impact (~ $500K)"}),



Here we introduced a new label ComplianceImpact  for the GDPR-related node, to distinguish it

as a compliance issue (you could also just use Impact , but giving it a separate label can be

useful for clarity). After running these commands, our graph has grown significantly. We can

inspect the new subgraph by querying, for example, all impacts stemming from the Account

Compromise event:

This query traverses all outgoing impact-related links from Account Compromise and should

return:

"Sensitive Data Exposed"

"Breaks GDPR Compliance"

"Financial Impact (~ \$500K)"

"Company Performance Risk"

This confirms our consequence chain. To visualize the hierarchy, you can also step through the

chain in the Browser: start from Account Compromise, expand the LEADS_TO  relationship to see

Sensitive Data Exposed, then expand its outgoing relationships, and so on. You will see a

branching structure: Account Compromise → Sensitive Data Exposed → (two branches: Breaks

GDPR Compliance and Financial Impact) → and both compliance and financial nodes ultimately

connect to Company Performance Risk.

What we’ve modeled is the reasoning path from a technical event to business risk. As noted in

the original LLM-based analysis, this kind of explicit linkage is powerful for explaining why a low-

level security issue matters in broader terms. In a typical spreadsheet risk register, such

relationships might be implicit or lost, but our graph makes them transparent.

Step 5: Incorporating Causes and Preventive Controls

Now that we have the impact side, we turn to the cause side – understanding why “User accounts

can be compromised” in the first place, and what controls exist (or could exist) to prevent it. We’ll

add contributing factors (causes) to the Account Compromise event, and then link mitigation

controls to those causes.

Based on our scenario, three primary causes were identified:

(tr:Impact {name: "Company Performance Risk"})

CREATE (e)-[:LEADS_TO]->(i1),

(i1)-[:CAUSES]->(c1),

(i1)-[:RESULTS_IN]->(b),

(c1)-[:RESULTS_IN]->(b),

(b)-[:CONTRIBUTES_TO]->(tr);

MATCH (e:Event {name: "Account Compromise"})-

[:LEADS_TO|:CAUSES|:RESULTS_IN|:CONTRIBUTES_TO*]->(impact)

RETURN DISTINCT impact.name AS ImpactNode;



1. Credentials Leaked – user passwords/credentials are obtained by attackers (e.g., via

phishing or a data leak).

2. No MFA Enabled – accounts did not have Multi-Factor Authentication, so a stolen password

is enough to compromise them.

3. Threat Not Detected – the breach wasn’t quickly caught by monitoring systems, allowing the

attacker to persist.

We model each cause as a node and link them into the graph:

Credentials Leaked CONTRIBUTES_TO Account Compromise

No MFA Enabled ALLOWS Account Compromise

Threat Not Detected AGGRAVATES Account Compromise

Next, for each cause we have an associated preventive control (a policy or measure that

mitigates that cause):

To mitigate Credentials Leaked, implement a Password Policy (e.g., strong passwords,

rotations) and conduct user security training (for simplicity, we’ll focus on the policy).

To mitigate No MFA Enabled, enforce an MFA Policy (requiring multi-factor auth on

accounts).

To mitigate Threat Not Detected, have a Security Monitoring Procedure (ensuring security

alerts and incident response are in place).

We will create cause nodes and control nodes, then link each control to the cause it mitigates.

Additionally, many organizations tie their controls to industry standards or compliance

requirements. In our scenario, assume these controls are part of an ISO 27001 Standard:

We add a node for "ISO 27001 Standard".

We link the standard to each control (relationship like INCLUDES_CONTROL or similar) to

show these policies are required by the standard.

Let’s execute these additions:

// Create cause nodes

CREATE (cL:Cause {name: "Credentials Leaked"}),

(cM:Cause {name: "No MFA Enabled"}),

(cD:Cause {name: "Threat Not Detected"});

// Link causes to the Account Compromise event

MATCH (e:Event {name: "Account Compromise"}),

(cL:Cause {name: "Credentials Leaked"}),

(cM:Cause {name: "No MFA Enabled"}),

(cD:Cause {name: "Threat Not Detected"})

CREATE (cL)-[:CONTRIBUTES_TO]->(e),

(cM)-[:ALLOWS]->(e),

(cD)-[:AGGRAVATES]->(e);

// Create control nodes



We added three cause nodes, three control nodes, and one standard node, plus the relationships

connecting them appropriately. Our graph now has an upstream side (causes) feeding into the

risk event, and a downstream side (impacts) leading out of the risk event, with controls

mitigating the causes.

To verify, we can query a couple of things:

List the causes linked to Account Compromise:

Expected results (order may vary):

Cause: "Credentials Leaked" – Relationship: CONTRIBUTES_TO

Cause: "No MFA Enabled" – Relationship: ALLOWS

Cause: "Threat Not Detected" – Relationship: AGGRAVATES

List controls mitigating each cause:

Expected:

Control: "Password Policy" mitigates "Credentials Leaked"

CREATE (p:Control {name: "Password Policy"}),

(mfa:Control {name: "MFA Policy"}),

(mon:Control {name: "Security Monitoring Procedure"}),

(iso:Standard {name: "ISO 27001 Standard"});

// Link controls to causes (mitigations)

MATCH (cL:Cause {name: "Credentials Leaked"}),

(cM:Cause {name: "No MFA Enabled"}),

(cD:Cause {name: "Threat Not Detected"}),

(p:Control {name: "Password Policy"}),

(mfa:Control {name: "MFA Policy"}),

(mon:Control {name: "Security Monitoring Procedure"})

CREATE (p)-[:MITIGATES]->(cL),

(mfa)-[:MITIGATES]->(cM),

(mon)-[:MITIGATES]->(cD);

// Link standard to controls

MATCH (iso:Standard {name: "ISO 27001 Standard"}),

(p:Control {name: "Password Policy"}),

(mfa:Control {name: "MFA Policy"}),

(mon:Control {name: "Security Monitoring Procedure"})

CREATE (iso)-[:INCLUDES_CONTROL]->(p),

(iso)-[:INCLUDES_CONTROL]->(mfa),

(iso)-[:INCLUDES_CONTROL]->(mon);

MATCH (cause:Cause)-[r]->(e:Event {name:"Account Compromise"})

RETURN cause.name AS Cause, type(r) AS Relationship;

MATCH (ctrl:Control)-[:MITIGATES]->(cause:Cause)

RETURN ctrl.name AS Control, cause.name AS MitigatedCause;



Control: "MFA Policy" mitigates "No MFA Enabled"

Control: "Security Monitoring Procedure" mitigates "Threat Not Detected"

Check the standard linkage:

Expected controls under ISO 27001: "Password Policy", "MFA Policy", "Security Monitoring

Procedure".

At this point, the graph is quite comprehensive. If you visualize the whole thing in Neo4j Browser

(by doing something like MATCH (n) RETURN n  and then using the auto-layout), you will see

Account Compromise roughly in the center:

To its left/upstream, the cause nodes (Credentials Leaked, No MFA, Threat Not Detected)

each connected upward to their mitigating controls and further up to the ISO standard.

To its right/downstream, the impact nodes (Sensitive Data Exposed, etc.) leading to the

Company Performance Risk.

Above or central, the Risk node “User accounts can be compromised” linking to the Account

Compromise event and the User persona.

We also have the persona “User” hanging off the Risk (with no further connections yet).

This mirrors the diagram we had the LLM generate in the previous approach – except now it’s a

live Neo4j graph we can query and update at will. We have one more dimension to add: the

human and asset context that grounds this abstract risk in reality.

Step 6: Adding Assets and Stakeholders

So far, our graph is conceptual: it doesn’t yet show which systems and people in our organization

are involved. In practice, a risk scenario needs to be tied to actual assets (applications,

databases, etc.) and owners (the people responsible for those assets). We will introduce two

example systems and their owners:

HR System – an internal system holding employee data. It has good security (strong

passwords, MFA enabled).

Marketing System – a system holding customer data for marketing campaigns. It has a

weakness: no MFA enforced (just strong passwords).

HR Manager – role/person responsible for the HR System.

Marketing Manager – responsible for the Marketing System.

Chief People Officer (CPO) – the HR Manager reports to this executive.

Chief Marketing Officer (CMO) – the Marketing Manager reports to this executive.

MATCH (:Standard {name:"ISO 27001 Standard"})-[:INCLUDES_CONTROL]->

(ctrl:Control)

RETURN ctrl.name AS ISO_Control;



Now, we connect these to our risk graph:

Both systems are at risk of the Account Compromise event (since user accounts in those

systems could be taken over if credentials leak). We model (:Asset)-[:AT_RISK_OF]->

(:Event) .

Each system implements certain controls:

HR System implements Password Policy and MFA Policy.

Marketing System implements Password Policy but (not) MFA Policy. We can either omit the

MFA link to indicate the gap or explicitly represent a lack (for simplicity, we just won’t create

an MFA implementation for Marketing System, meaning it’s missing).

Ownership relationships:

HR Manager OWNS HR System.

Marketing Manager OWNS Marketing System.

HR Manager REPORTS_TO CPO.

Marketing Manager REPORTS_TO CMO.

Let’s add these to the graph:

// Create asset and role nodes

CREATE (hr:Asset {name: "HR System"}),

(mkt:Asset {name: "Marketing System"}),

(hrMgr:Role {name: "HR Manager"}),

(mktMgr:Role {name: "Marketing Manager"}),

(cpo:Role {name: "Chief People Officer"}),

(cmo:Role {name: "Chief Marketing Officer"});

// Link assets to controls they implement

MATCH (hr:Asset {name: "HR System"}), (mkt:Asset {name: "Marketing System"}),

(pwd:Control {name: "Password Policy"}), (mfa:Control {name: "MFA

Policy"})

CREATE (hr)-[:IMPLEMENTS]->(pwd),

(hr)-[:IMPLEMENTS]->(mfa),

(mkt)-[:IMPLEMENTS]->(pwd);

// (Note: We do NOT create (mkt)-[:IMPLEMENTS]->(mfa) to reflect that Marketing

lacks MFA)

// Link assets to the risk event (at risk of compromise)

MATCH (e:Event {name: "Account Compromise"}),

(hr:Asset {name: "HR System"}), (mkt:Asset {name: "Marketing System"})

CREATE (hr)-[:AT_RISK_OF]->(e),

(mkt)-[:AT_RISK_OF]->(e);

// Link ownership of assets

MATCH (hrMgr:Role {name: "HR Manager"}), (mktMgr:Role {name: "Marketing

Manager"}),

(hr:Asset {name: "HR System"}), (mkt:Asset {name: "Marketing System"})

CREATE (hrMgr)-[:OWNS]->(hr),

(mktMgr)-[:OWNS]->(mkt);

// Link reporting structure



Now we have grounded the graph in reality:

The HR System and Marketing System nodes attach to the controls and the risk event.

Notably, the Marketing System lacks an IMPLEMENTS MFA Policy  relationship, which is an

intentional gap.

The User accounts can be compromised risk now can be contextualized: it affects those two

systems (and those systems have different preparedness levels).

The stakeholder hierarchy is captured: each system has an owner, and those owners report

to higher management. This will be useful when determining who needs to know about

problems.

To check our additions:

See which systems are at risk of account compromise:

Should list "HR System" and "Marketing System".

Confirm control implementations:

Expect:

HR System implements ["Password Policy","MFA Policy"]

Marketing System implements ["Password Policy"]

(No MFA in Marketing’s list, indicating the gap.)

Check ownership:

Expect:

"HR Manager" owns "HR System"

"Marketing Manager" owns "Marketing System"

MATCH (hrMgr:Role {name: "HR Manager"}), (mktMgr:Role {name: "Marketing

Manager"}),

(cpo:Role {name: "Chief People Officer"}), (cmo:Role {name: "Chief

Marketing Officer"})

CREATE (hrMgr)-[:REPORTS_TO]->(cpo),

(mktMgr)-[:REPORTS_TO]->(cmo);

MATCH (asset:Asset)-[:AT_RISK_OF]->(:Event {name:"Account Compromise"})

RETURN asset.name AS System, "at risk of Account Compromise" AS RiskRelation;

MATCH (asset:Asset)-[:IMPLEMENTS]->(ctrl:Control)

RETURN asset.name AS System, collect(ctrl.name) AS ImplementedControls;

MATCH (mgr:Role)-[:OWNS]->(asset:Asset)

RETURN mgr.name AS Owner, asset.name AS Asset;



Check reporting:

Expect:

"HR Manager" reports to "Chief People Officer"

"Marketing Manager" reports to "Chief Marketing Officer"

Our graph now connects technology, people, and policy. It’s evident that the Marketing System is

in a riskier state (since it lacks the MFA control), which could be flagged in an analysis. We have

effectively set the stage to simulate an incident: a credential leak affecting these systems, and

then use the graph to deduce consequences and actions.

Step 7: Simulating an Incident and Querying the Graph

Finally, we introduce an incident to test our risk model. Imagine the following scenario: A breach

monitoring service reports that a dump of company usernames and hashed passwords has

appeared on the internet – a credential leak has occurred (say in June 2025). Among the leaked

credentials are accounts from both the HR System and the Marketing System (five accounts

from each, for example). This incident can potentially trigger account compromises on those

systems.

We will add an Incident node to represent this credential leak event, and connect it to our graph:

Credential Leak (June 2025) AFFECTS HR System (with a detail like "5 accounts" as part of

the relationship or node properties).

Credential Leak (June 2025) AFFECTS Marketing System.

Credential Leak (June 2025) TRIGGERS Account Compromise (since leaked credentials could

lead to accounts being taken over).

Let’s add the incident:

MATCH (mgr:Role)-[:REPORTS_TO]->(exec:Role)

RETURN mgr.name AS Manager, exec.name AS Executive;

// Create incident node

CREATE (incident:Incident {name: "Credential Leak (June 2025)"});

// Link incident to affected assets

MATCH (incident:Incident {name:"Credential Leak (June 2025)"}),

(hr:Asset {name:"HR System"}), (mkt:Asset {name:"Marketing System"})

CREATE (incident)-[:AFFECTS {accounts:5}]->(hr),

(incident)-[:AFFECTS {accounts:5}]->(mkt);

// Link incident to risk event

MATCH (incident:Incident {name:"Credential Leak (June 2025)"}),

(e:Event {name:"Account Compromise"})

CREATE (incident)-[:TRIGGERS]->(e);



We added a property {accounts:5}  on the AFFECTS relationships to denote the number of

accounts compromised in each system, just as an example of including incident details.

Now, with the incident in place, we can query the graph to answer important questions. Unlike

the LLM approach where we asked the AI in natural language and it reasoned over the implicit

graph，here we can write Cypher queries to get precise answers from the data.

1. Which system is at highest risk now? Given the leak, both systems have some accounts

exposed. However, the Marketing System lacks MFA, making it more vulnerable (those leaked

passwords can be directly used by attackers). We can find assets that do not implement MFA:

This will return "Marketing System" as the asset without MFA. In contrast, if we check assets with

MFA, HR System would appear. Thus, Marketing System is most at risk. (We could also directly

see this by noting the missing relationship in the graph or using a Boolean property, but this

query demonstrates the approach.)

2. What data could be exposed if the Marketing System is breached? We can follow the chain

from the Marketing System to its potential impacts. One way is to traverse from the asset

through the risk event to impacts:

This will find all impact nodes reachable from Marketing System via the Account Compromise

event. The results would include "Sensitive Data Exposed", "Breaks GDPR Compliance", "Financial

Impact (~ \$500K)", "Company Performance Risk". In other words, if Marketing System accounts

are compromised, it could lead to exposure of sensitive customer data, violation of GDPR, a

significant financial hit (~\$500K), and ultimately a broader business impact on company

performance. This matches the scenario we modeled.

3. Who should be notified about this incident? We want to find the stakeholders responsible for

the affected systems. We can traverse the ownership hierarchy from each affected asset:

This query goes from the incident to each asset it affects, finds who owns that asset, and who

that owner reports to. The results should be:

MATCH (asset:Asset)-[:AT_RISK_OF]->(:Event {name:"Account Compromise"})

OPTIONAL MATCH (asset)-[:IMPLEMENTS]->(:Control {name:"MFA Policy"})

WITH asset, COUNT(*) AS hasMFA

WHERE hasMFA = 0

RETURN asset.name AS AssetWithoutMFA;

MATCH (mkt:Asset {name:"Marketing System"})-[:AT_RISK_OF]->(e:Event)-

[:LEADS_TO|:CAUSES|:RESULTS_IN|:CONTRIBUTES_TO*]->(impact)

RETURN DISTINCT impact.name AS Potential_Impact;

MATCH (incident:Incident {name:"Credential Leak (June 2025)"})-[:AFFECTS]->

(asset:Asset)<-[:OWNS]-(owner:Role)

OPTIONAL MATCH (owner)-[:REPORTS_TO]->(exec:Role)

RETURN asset.name AS AffectedSystem, owner.name AS Owner, exec.name AS

ReportsTo;



AffectedSystem: HR System – Owner: HR Manager – ReportsTo: Chief People Officer

AffectedSystem: Marketing System – Owner: Marketing Manager – ReportsTo: Chief

Marketing Officer

Thus, the Marketing Manager and CMO should be notified for the Marketing System incident, and

the HR Manager and CPO for the HR System incident. These individuals are accountable for the

systems at risk.

4. What immediate actions should be taken? While this question involves some judgment, our

graph can highlight actions by pointing to missing controls or active causes:

The graph shows Marketing System lacks an MFA Policy implementation – an immediate

action is enable MFA on Marketing System (to close that gap).

The Password Policy was in place, yet credentials leaked – likely through phishing or reuse.

Action: reset all compromised passwords (since the graph can’t tell us how they leaked, but it

shows password policy alone wasn’t enough to prevent the leak).

The presence of Threat Not Detected cause suggests if the compromise had happened

quietly, it might go unnoticed. If our monitoring didn’t catch the misuse of leaked credentials,

we need to improve monitoring and incident response (the graph node “Threat Not Detected”

mitigated by “Monitoring Procedure” hints at this).

The Compliance aspect shows we violated the ISO standard by not having MFA on one

system – we should report this gap and ensure compliance to avoid audit issues.

We can’t get all of these directly via Cypher since some are interpretive, but we can identify that

Marketing System is missing an MFA link, which is a red flag:

This will return "Marketing System" with MFA_Missing = true. So indeed, enabling MFA is an

action item. We could also query if any cause nodes are currently not mitigated by controls

(though in our graph all causes have a control linked, so that’s covered).

By querying and examining the graph, we’ve effectively performed an analysis of the incident

using our knowledge graph. In the original LLM session, we asked the AI these questions and it

reasoned along the graph; here we wrote explicit queries to derive the answers from the data

model. The advantage now is that the results are traceable and we can adjust queries or data as

needed.

Step 8: Visualizing the Graph (Optional)

Neo4j Browser will automatically visualize query results that contain nodes and relationships. For

instance, if you run a query like MATCH (n)-[r]->(m) RETURN n,r,m  to fetch a subgraph, the

result view shows an interactive node-link diagram. You can also use Neo4j Bloom (a

MATCH (mkt:Asset {name:"Marketing System"})

OPTIONAL MATCH (mkt)-[:IMPLEMENTS]->(ctrl:Control {name:"MFA Policy"})

RETURN mkt.name AS System, ctrl IS NULL AS MFA_Missing;



visualization tool) to create more polished graph visualizations or run Cypher-based search

phrases.

For a quick visualization of the entire graph, you could run:

This returns all nodes and relationships. In the graph view, you’ll see the full picture of our risk

scenario. It may be a bit cluttered, so you can manually arrange the nodes:

Pull the central Account Compromise event and User accounts can be compromised risk to

the center.

Arrange cause nodes and controls to one side, impact nodes to the opposite side, and

assets/roles to another side.

Alternatively, break it down: visualize upstream causes and controls with one query, and

downstream impacts with another. For example: MATCH (c:Cause)-[*]->(e:Event

{name:"Account Compromise"}) RETURN c, e  for the upstream side, and MATCH (e:Event

{name:"Account Compromise"})-[*]->(impact) RETURN e, impact  for downstream.

If needed, you can export the graph or a subgraph. Neo4j supports exporting to formats like

GraphML, or you can simply copy the Mermaid diagram format as we did with the LLM (the LLM

provided a Mermaid code which we could use to render a diagram). For example, the structure

we built could be expressed in Mermaid syntax, or you might use the APOC library (if installed) to

export a textual representation. Since this is a hands-on workshop, the Neo4j Browser view might

suffice as a visual confirmation.

Conclusion

We have successfully translated the “LLM as ephemeral graph database” concept into a tangible

Neo4j graph implementation. Using a temporary Neo4j instance, we built a cybersecurity risk

knowledge graph that mirrors the one previously created through conversational AI. This exercise

demonstrates several key points:

MATCH (n)-[r]->(m) RETURN n,r,m;

Feasibility of Ephemeral Graph Analytics: We spun up a Neo4j database on-demand,

performed complex graph modeling and querying, and we could just as easily shut it

down after extracting insights. This validates the approach proposed in our MVP white

paper on ephemeral Neo4j usage – that graph databases can be treated as disposable

computation engines, activated only when needed. In a production setting, one could

automate this: provision a Neo4j container, load data (e.g., from CSV or S3), run Cypher

transformations, output results, then terminate the instance.

→

Benefits of a Real Graph DB: Compared to the LLM approach, using Neo4j gave us

precise control and reliability. We defined an explicit schema (node labels, relationship

types) and could query the graph with well-defined semantics. There’s no risk of the AI

→



In conclusion, empowering graph thinkers in the age of Generative AI can be achieved with a

blend of AI and traditional databases. LLMs can inspire new approaches to user interaction with

graphs, but Neo4j and other graph databases provide a strong foundation for execution. Using

ephemeral Neo4j instances, as we’ve shown, organizations can perform powerful graph-based

reasoning on demand, with cost-efficiency and scalability, without permanently hosting a

database. This approach transforms graph analytics into a serverless, flexible service – bring up

a graph when you need it, ask your important questions, get your insights, and then gracefully

shut it down. The result: more agile decision-making with graphs, and a methodology that keeps

pace with the dynamic, ephemeral nature of modern problems and data.

“misremembering” a link or hallucinating data – the relationships are exactly as we

created them. We also gained the ability to handle larger data (not limited by an AI

context window) and to integrate with other tools (for example, connecting the

database to BI dashboards or running graph algorithms from Neo4j’s GDS library).

Interactive Exploration and Queries: Through Cypher queries, we were able to ask

nuanced questions of the graph (e.g., find assets missing a control, traverse impact

paths, identify stakeholders) and get answers based on the data. This is akin to how

we’d query any Neo4j graph – reinforcing that ephemeral instances don’t lose any

functionality. You could even run graph algorithms on an ephemeral instance if you

needed (for example, PageRank on a subgraph) and then shut it down, illustrating on-

demand analytics power.

→

Bridging Non-Technical and Technical Users: While an LLM interface might be

friendlier to non-technical users, this walkthrough shows that with a bit of Cypher, a

technical user can achieve the same outcome and more. Importantly, one could wrap

this logic behind a simple interface or use an LLM as a front-end to generate Cypher

(i.e., the LLM could translate natural language requests into Cypher against an

ephemeral Neo4j). This hybrid approach could marry the accessibility of natural

language with the robustness of a real database.

→

Ephemerality as a Mindset: Finally, working with an ephemeral Neo4j encourages good

practices like automation and documentation of the build process. Because you don’t

assume a long-running database, you script the steps to create the graph from scratch.

This means the graph’s creation becomes reproducible and version-controlled (as we

have essentially in this document, step by step). If the graph needs to be updated or

corrected, you can recreate it. If an analysis needs to be rerun next month with new

data, you spin up a fresh instance and execute the script. This ephemeral mindset leads

to more reproducible analytics and eliminates configuration drift that often plagues

long-lived databases.

→


