
Ephemeral GenAI SIEM: A Serverless, Graph-
Driven Approach to Security Event Management

Executive Summary

Security Information and Event Management (SIEM) tools have long been central to enterprise defense,
but traditional SIEMs struggle with scale, context, and cost. They often ingest massive volumes of log
data into centralized systems, generating thousands of alerts with little context – a high noise-to-signal
ratio that overwhelms analysts . Moreover, conventional SIEM pricing models charge by data volume,
forcing organizations to retain only a fraction of telemetry (often <10%) to control costs . The result
is a brittle status quo:  SIEMs tell you what happened, but not why it matters or what to do next

. 

This white paper introduces Ephemeral GenAI SIEM, a next-generation approach co-developed by Dinis
Cruz and ChatGPT Deep Research. It  leverages  serverless computing, semantic knowledge graphs,  and
generative  AI  (GenAI) to  redefine  how  security  data  is  collected,  analyzed,  and  acted  upon.  Key
innovations and decisions include:

On-Demand  Data  Collection: Instead  of  blindly  ingesting  all  logs,  Ephemeral  GenAI  SIEM
dynamically pulls relevant data directly from sources when an incident or query arises. Logs
and evidence remain at the source (or in cheap cloud storage) until needed, avoiding expensive
centralization and retaining complete context. This drastically lowers data ingestion costs and
ensures  nearly 100% of useful data can be analyzed (no more guessing which logs to drop)

.

Serverless & Ephemeral Architecture: The system runs primarily on serverless functions and
temporary analysis engines that spin up as needed and terminate when done.  Cloud object
storage (e.g. Amazon S3) serves as the database, storing raw inputs and intermediate results
as versioned files . Using the LETS (Load, Extract, Transform, Save) pipeline pattern, every
processing  step  writes  its  output  to  persistent  storage,  enabling  full  traceability  and
reproducibility . Compute instances hold data in-memory only for the duration of analysis,
yielding a highly scalable, cost-efficient design with zero idle infrastructure.

Semantic Knowledge Graph Core: All security data is converted into a  semantic knowledge
graph – a richly structured representation of entities (devices, users, IPs, malware files, etc.) and
their  relationships  (accesses,  communications,  ownership,  etc.).  This  graph-centric  model,
powered by the open-source MGraph-DB engine, allows lightning-fast in-memory queries while
persisting  to  JSON  files  on  disk/cloud  for  durability .  Graph-based  storage  provides
flexible, schema-less integration of diverse data sources and naturally captures context across
events.

Generative AI for Enrichment (with Determinism): GenAI (LLMs) is woven into the pipeline for
tasks  that  normally  require  human-like  reasoning  –  parsing  unstructured  logs,  extracting
entities, linking related events, or even generating plain-language summaries. However, unlike
“black-box”  AI,  each  LLM  interaction  is  controlled  and  sandboxed.  We  use  structured  output
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schemas to force the LLMs to return data as typed JSON objects , which are then merged into
the graph. This ensures  explainable and repeatable results (no unpredictable AI magic): the
same inputs always produce the same graph outputs, satisfying security’s need for determinism
and auditability. Over time, as patterns emerge, many LLM-generated steps can be replaced with
code for performance, using AI primarily where it adds unique value (e.g. interpreting novel data
formats or natural language).

No-Code Development & Self-Evolving Workflows: The  entire  stack  is  designed for  agility.
Engineers or analysts can define new data transformations or detection logic in plain language
or high-level terms, and let the GenAI-assisted system implement them – drastically reducing
coding effort. The system evolves organically from each investigated incident: when a new
data source or correlation is encountered, a new “connector” or parser is quickly spun up (often
with AI assistance) and added to the toolkit. Over time, the SIEM grows a library of modules for
different log types and analysis routines. This  iterative,  Wardley-mapped approach ensures the
solution continuously adapts to emerging threats and enterprise needs, without large upfront
deployments.

Context-Rich  Investigations  and  Outputs: Ephemeral  GenAI  SIEM  emphasizes  capturing
context and evidence at every step. Instead of a shallow alert saying "Malware X detected on
Host Y", the system builds a knowledge graph trail: how the malware got there (e.g. delivered via
email  link),  what  it  did,  which  systems  were  affected,  who  owns  those  systems,  and  what
controls failed. This evidence-driven graph can be visualized to reveal the full attack path and
mapped  to  frameworks  like  MITRE  ATT&CK  or  MITRE  D3FEND  for  tactic/technique  context.
Finally, the platform can automatically generate stakeholder-specific reports – e.g. a technical
report for responders with all indicators and log references, an executive summary for a CISO
focusing on business impact and remediation, and even tickets or action lists for IT owners. By
aligning facts, hypotheses, and analysis in one graph, the SIEM not only detects events but helps
answer “Why does this matter and what should we do?” – bridging the gap from data to decision.

In summary,  Ephemeral GenAI SIEM offers a fundamentally new, cloud-native blueprint for security
monitoring:  one that  scales  by not  scaling (it  only  uses resources when needed),  that  is  open and
extensible (built  on open-source graphs and cloud storage),  and that  provides deep intelligence by
leveraging graphs and AI. This white paper details the motivation, architecture, and workflow of this
solution,  demonstrating  how  it  can  drastically  improve  detection  and  response  capabilities  while
controlling costs and complexity.

Introduction: Rethinking SIEM for Scale and Context

Traditional SIEM platforms were originally designed to aggregate logs into a central store, correlate
events, and generate alerts for security teams . This model made sense in the early 2000s, but it is
straining under the weight of modern IT environments. Organizations today deal with exploding data
volumes, diverse infrastructure (cloud, on-prem, IoT, BYOD), and advanced threats that mutate
and move laterally . In this landscape, conventional SIEMs reveal several critical shortcomings:

Volume and Cost Constraints: SIEMs typically charge based on the volume of data ingested or
indexed, making it prohibitively expensive to centralize everything . To manage costs, teams
end up filtering out or sampling logs – as a result, as little as 5–10% of security-relevant data might
actually  be  analyzed .  Even  with  unlimited  license  options,  the  overhead  of  moving  and
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storing petabytes of data is immense. The outcome is dangerous blind spots: if an organization
must guess which logs matter, important signals can be missed entirely.

Alert Overload, Little Insight: A classic SIEM may spit out thousands of alerts per day, yet only
a handful represent true incidents . The rest are false positives or low-context notifications
that  "something happened" without clarity. Analysts spend hours triaging noisy alerts, manually
stitching together clues from disparate tools to understand if an alert is important . Valuable
time is lost hunting for context – which user was involved, what system, what payload, was it
part of a broader campaign? SIEMs provide scant help here: they  tell you an event occurred
but not why it matters  or what next steps to take.

Lack  of  Contextual  Intelligence: Traditional  SIEM  correlation  is  largely  rule-based  and
signature-driven. It flags known bad patterns but often misses the forest for the trees.  Threat
context is lacking – e.g., a SIEM may not automatically enrich an alert with threat intelligence (is
that IP known malicious?), asset criticality (is the target a crown jewel system?), or user behavior
(is this login abnormal for the user?) . This absence of enrichment means responders start
investigations from scratch, querying multiple systems to gather context that the SIEM didn’t
provide.

Integration Gaps: Modern enterprises  have  sprawling  tech  stacks,  including cloud services,
containers, SaaS applications, and remote endpoints. Many SIEMs struggle to ingest or make
sense of telemetry from all these sources . Proprietary log formats, API limitations, or sheer
data velocity (e.g. cloud audit logs) mean that the SIEM might simply not include those feeds,
leaving blind spots. Integration projects to cover these often prove complex and fragile.

Scaling and Performance Limits: As data volume increases, centralized SIEM architectures can
choke. Indexing and querying large datasets becomes slow, and correlation rules may fail  to
keep up in real-time . Some organizations find they must  delay analysis or drop data
just to maintain SIEM performance . In the worst case, security teams start avoiding certain
queries because they are too slow or too costly to run on the SIEM – effectively narrowing their
visibility to meet tool limitations.

In  short,  the  classic  SIEM  approach  is  showing  its  age.  As  one  industry  observer  put  it,  “You’re
collecting logs, but not catching threats.”  The gap between data collection and actionable intelligence
is  widening.  To close this  gap,  a  new approach is  needed –  one that  can economically  harness  all
relevant data, provide rich context and explanations, and flexibly adapt to new data sources and attack
techniques.

Design Principles of an Ephemeral GenAI SIEM

Ephemeral GenAI SIEM is designed from the ground up to address the above challenges. It is not a
single  monolithic  product,  but  rather  an  architecture  pattern and  workflow  enabled  by  cloud
infrastructure and AI. The following core principles guide its design:

1. Data Stays at the Source (Until Needed): Instead of funneling all logs into one expensive
datastore, this approach queries data  in-place.  Wherever possible, logs and events remain in
their original repositories (e.g. in an application’s database, a SaaS platform’s audit logs, a cloud
storage bucket of raw logs). When an alert or question arises, the system  dynamically loads
only the pertinent data for  analysis,  rather  than pre-ingesting everything.  This  on-demand
model means we incur cost and effort proportionate to actual investigative needs, not worst-case
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data volumes. The more we can analyze data at the edge or in its native storage, the more we
avoid duplicated storage and transfer.  Modern cloud environments even allow running code
close  to  data  (e.g.  AWS Lambda  functions  near  an  S3  bucket).  By  treating  storage  as  the
primary database and minimizing data movement, we achieve both cost savings and access
to complete, high-fidelity data .

2. Layered ETL with Full Traceability (LETS): We adopt the  LETS (Load, Extract, Transform,
Save) pipeline architecture , a variant of ETL tailored for clarity and reuse. Every stage of data
processing is encapsulated in a module that loads raw input (from a source or previous stage),
extracts structured information, transforms it (e.g. into graph format or by correlation), and saves
the result as a new dataset. Crucially,  each stage’s output is written to persistent storage
(files or objects), becoming an immutable, versioned artifact . For example, Stage 1 might
pull raw firewall logs for a specific hour and save them as a file; Stage 2 parses those logs into a
JSON graph and saves that, and so on. This design has several benefits:

Determinism & Reproducibility: Because each step is saved, we can rerun any or all stages at any
time, given the same inputs, and get the same result. The entire incident analysis can be
reconstructed from original sources, supporting forensic needs and “infrastructure as code” style
reproducibility.
Explainability: Analysts can inspect the outputs of each stage to understand how a conclusion
was reached. If an alert is generated, one can trace back through the saved intermediate
artifacts to see the supporting evidence (e.g. which log line triggered it, which correlation
connected it).
Fault Tolerance: If a pipeline fails midway (or if new data arrives), you can resume or re-run from
an appropriate stage rather than starting over from scratch.
CI/CD Integration: Pipelines can be version-controlled and tested step-by-step. Each
transformation stage can have unit tests using the saved outputs as fixtures. This is a clean,
modular alternative to opaque “black box” SIEM logic – akin to how modern data engineering
values transparency .

Ephemerality: Since data at each stage is saved to durable storage, the compute that performed
the transformation can be safely destroyed after completion. No process needs to hold state in
memory for long. This enables the heavy use of serverless functions and short-lived containers
for processing, which scale out on demand and incur no cost when idle.

3. Semantic Knowledge Graph Data Model: Under the hood, all extracted security information
is represented as a knowledge graph. This means events, entities, and relationships are nodes
and edges in a graph structure, annotated with properties (timestamps, IDs, etc.) and linked to
one another. For example, an “Alert” node might connect to a “File” node (the malware sample)
which connects to a “Host” node (the affected laptop) and a “User” node (the laptop owner), and
so  on.  Graphs  are  immensely  flexible:  they  can  easily  incorporate  new  entity  types  or
relationships  as  needed  (no  rigid  schema  migration),  and  they  naturally  model  the
interconnected nature of security data (attacks are chains of events on various entities). We use
an open-source memory-first graph database (MGraph) to manage these graphs, allowing us
to manipulate and query the data efficiently in-memory, then serialize to JSON for storage .
MGraph was specifically designed for GenAI and serverless scenarios – it runs in-memory inside
a function, and reads/writes its state as JSON to the file system (or S3) as needed . This
gives us the speed of an in-memory DB with the persistence of a disk, all  without running a
dedicated database server.  In  essence,  we treat JSON files in cloud storage as our graph
database – a key enabler of serverless operations . The graph model also makes it possible
to easily visualize the data (e.g., generating a graph diagram of an attack sequence) and to apply
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graph  analytics  (shortest  paths,  community  detection  for  clusters  of  alerts,  etc.)  for  deeper
insights.

4. Minimal Data Transfer (Relevant Subsets Only): A guiding principle is to  reduce data at
each step to only what is necessary for the current analysis goals. Traditional SIEMs often collect
everything “just in case,” resulting in huge data lakes where most data is never queried. In our
approach,  we  start  from  a  specific  question  or  event  and  work  outward,  pulling  in  data
iteratively. For example, if investigating a malware alert on a host, we might first grab the alert
details and the host's identifier. Then we pull only that host’s log entries around the time of the
incident, and perhaps the specific file hash from a threat intel database. We don’t ingest logs
from unrelated systems or timeframes until they are shown to be needed. This scoped approach
keeps each processing stage lightweight. Moreover, once data is converted into the semantic
graph, we often compress or summarize it. The graph might store a log event in a normalized
form (just key fields and a reference to the raw log for drill-down), rather than storing an entire
verbose  log  line.  By  aggressively  filtering  and  summarizing  as  we  go,  we  ensure  that
subsequent stages deal with a manageable amount of data focused on the problem at hand.
If a new question arises, we can always go back to sources for more (since we haven’t thrown
anything away at the source), but we avoid dragging the entire haystack through every stage of
the pipeline.

5. GenAI in the Loop – with Controls: Generative AI, especially large language models, are used
as assistants in the pipeline where appropriate. For instance, an LLM can be tasked to parse an
unstructured  text  log  that  doesn’t  have  a  clearly  defined  schema  –  turning  a  cryptic  error
message or stack trace into structured data (key=value pairs or a short summary). LLMs can also
help identify connections (“this IP address from log A appears in log B” or “log lines suggest
these events are part  of  the same incident”).  However,  a crucial  principle is  that  LLM usage
should not compromise determinism or trust. We tackle this by constraining LLM outputs to a
specific  format.  Using  techniques  like  OpenAI’s  function  calling  or  JSON schema output,  we
ensure that  when an LLM is  invoked,  it  returns  a  structured object  (e.g.,  a  list  of  entities  it
extracted,  or  a  suggested  link  between two nodes) .  These  results  are  then  validated  or
reviewed  (sometimes  a  human-in-the-loop  might  verify  a  critical  step,  or  code  logic  might
double-check it). Over time, as patterns stabilize, the knowledge gained from LLM analyses can
be codified into traditional code – for example, if the LLM repeatedly identifies that a certain log
format can be parsed with regex X into fields, we can replace the LLM call with that deterministic
parser. In this way, the pipeline  continuously learns and optimizes, using AI to fill gaps but
moving toward efficient  algorithms as  soon as  we’re  confident.  We also isolate  LLM calls  to
specific tasks (never end-to-end incident analysis in one go), which eliminates the opaque “AI
magic” problem and makes each AI-assisted step explainable. The end result is a smart assistant
that accelerates data interpretation without turning the SIEM into a non-deterministic black box.

6. Full Evidence and Provenance Chain: Ephemeral GenAI SIEM treats security investigations
like scientific experiments: every fact or conclusion is backed by evidence, and hypotheses are
tracked. The knowledge graph isn’t just storing what happened, but also how we know. Each node
in the graph (say, “Malware File XYZ was executed on Host ABC at 12:00”) can carry an attribute
pointing to the source data or analysis that confirmed it (e.g., a pointer to a specific log file line,
or an EDR alert ID). Because our pipeline saves intermediate artifacts, an analyst or auditor can
drill all the way down from a high-level incident report to the raw data that substantiates it. This
provenance tracking builds trust: stakeholders can verify that conclusions are data-driven and
not hallucinated or assumed. Additionally, we integrate risk and ownership metadata into the
graph from the start. That means as soon as we identify an asset, we try to attach information
like its classification (public vs. sensitive data), its business owner, and any known vulnerabilities
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or criticality. As soon as we identify a user account, we link it to the person or role and their
department. By doing this linkage early, when an incident graph is built, it is already enriched
with business context – ready to answer “What is the impact?” and “Who needs to be involved?”
during the investigation,  not  as  a  separate manual  enrichment after  the fact.  This  approach
ensures that when an alert is raised to decision-makers, it is accompanied by actionable context
(e.g., “Malware X on host Y which is a finance server holding PII data, owned by John Doe, could lead
to GDPR impact.”). Traditional SIEMs often leave this critical context as an exercise for the analyst;
here we strive to provide it out-of-the-box.

7. Ephemeral, Disposable Infrastructure: A cornerstone of this approach is that nothing runs
24/7  except  storage.  All  computation  happens  in  transient  bursts.  We  might  use  cloud
functions, ephemeral containers, or short-lived VMs to execute each pipeline stage or respond to
each event. Once a task is done – e.g. logs have been processed into a graph and saved – the
compute environment can be torn down completely. In an ideal state, you could delete the entire
SIEM processing stack and rebuild it from scratch using the data and definitions stored in S3 and
code  repositories,  and  you’d  get  the  same  results.  This  makes  the  system  highly  resilient
(infrastructure as code, easy to redeploy) and  inherently scalable:  if  you suddenly have 100
incidents to analyze, you just invoke 100 parallel pipelines without worrying about provisioning
and sizing a long-running cluster. It also dramatically reduces attack surface – with no always-on
servers or databases (which in traditional SIEMs are juicy targets themselves),  there’s less to
defend. This “here now, gone next minute” compute model follows the principle that  the best
defense is not having anything to attack. Even if an attacker gained access to the SIEM’s processing
environment,  there’s  nothing persistent  to exploit  once the function finishes and memory is
wiped. This principle was proven in practice by one of our earlier projects that exposed an S3-
based API – it had virtually no servers to latch onto, improving security posture by design .

8. Augment Analysts, Don’t Replace Them: Importantly, Ephemeral GenAI SIEM is not about
removing humans from the loop or automating away security engineers. On the contrary, it’s
designed to make security teams far more effective. By relieving analysts from grunt work (like
manually gathering logs from 5 systems or cross-correlating timestamps),  they can focus on
interpretation and decision-making. The system’s outputs – especially with GenAI summarization
– can provide a starting narrative and highlight the key risk factors, but a human will validate and
add judgment. Also, analysts can interact with the knowledge graph through queries or even
natural language questions (with an LLM translating the question to a graph query), making the
investigation feel like a conversation with your data. The aim is to achieve a  10x productivity
boost for security teams (a goal echoed by others in the industry ), enabling small teams to
handle the growing scale of threats. Rather than replacing your SOC, this approach turbocharges
it  –  the  mundane  is  automated,  the  complex  is  made  simpler,  and  the  human  expertise  is
amplified.

9.  Evolutionary  Development  (Self-Improving  System): Finally,  the  architecture  embraces
continuous evolution. We often start deployment not by boiling the ocean (ingesting everything
on day one), but by tackling one incident or use case end-to-end. For example, we might begin
with building the pipeline for malware detection on endpoints. As we solve that, we accumulate
building blocks – perhaps a parser for EDR alerts, a connector to the Active Directory for user
info, a routine to fetch PCAP data from a sensor, etc. Next, we might take on a cloud security use
case (e.g., unusual AWS API calls), which will introduce new data sources and require new graphs
(like  a  cloud  asset  inventory).  Because  the  system  is  modular,  we  can  plug  in  these  new
components and also link them with existing ones (e.g., connecting an AWS alert with an on-
prem user account if relevant). Over time, as more scenarios are handled, the knowledge graph
grows in breadth, and the library of data connectors and transformation code grows. The SIEM
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essentially  builds  itself  piece  by  piece with  each real  incident  –  ensuring that  development  is
always  driven  by  real-world  needs  and  delivers  immediate  value.  This  approach  aligns  with
Wardley Mapping and ILC (Innovate-Leverage-Commoditize) cycles: first innovate with quick
prototypes (often using LLMs or scripting to prove it out), then solidify the successful approaches
by coding them more robustly  (leveraging what  we learned),  and finally  commoditize  stable
features into standard tools or microservices. The result is a living system that can adapt to the
changing  threat  landscape  and  incorporate  new  technologies  (like  new  AI  models  or  data
platforms) as they emerge, without a complete redesign.

These principles set the stage for a SIEM that is cloud-native, intelligent, and laser-focused on providing
actionable  security  insight rather  than a  flood of  raw data.  Next,  we dive  into  the  architecture  that
realizes these principles, and we illustrate the workflow with a concrete example.

Architecture Overview

At  a  high  level,  the  Ephemeral  GenAI  SIEM  can  be  visualized  as  a  pipeline  that  starts  from  raw,
distributed  data  sources and  ends  with  consolidated  security  knowledge (alerts,  graphs,  and
reports), with several transformation phases in between. Key architectural components include:

1. Data Sources and Connectors: These are the various origins of security data, which can be anything
from traditional log files and SIEM feeds to API endpoints, message queues, or even screenshots and
emails. Examples include: - Endpoint telemetry (EDR logs, OS event logs on PCs and servers) - Network
logs (firewall,  IDS alerts,  DNS logs,  cloud VPC flow logs)  -  Application logs (auth events,  error logs,
transaction logs) -  Cloud service logs (AWS CloudTrail,  Azure Activity Logs,  SaaS audit  logs)  -  Threat
intelligence  feeds  (IoCs,  vulnerability  databases)  -  Asset  and  identity  inventories  (CMDB,  Active
Directory, HR databases for user info) - Unstructured data relevant to an incident (an email body that
delivered a phish, a malicious file sample, a chat transcript, etc.)

Each source might have a dedicated connector function that knows how to retrieve data from it (using
APIs,  database  queries,  or  by  reading  files  from  storage).  Connectors  are  typically  small,  stateless
functions that load raw data for a given query or time range (the Load in LETS). For efficiency, connectors
might pull data in parallel if multiple sources are needed.

2. Persistent Data Lake (Object Storage as Database): All data, once pulled, is stored in a cloud object
storage (like S3) in a structured way. We treat this storage as our  source of truth database . For
example, when fetching an hour of Windows Event Logs related to a host, the connector might save a
file  raw/hostXYZ/2025-06-18T12-13_events.json  in the bucket. This persistent layer decouples
data acquisition from processing – once data is in the lake, subsequent pipeline stages work off those
saved files, not the live source. This also means if the same data is needed again (for another analysis or
due to a pipeline change), we can reuse it without another external fetch. All data is stored in an open
format ( JSON, CSV, PCAP, etc.) to avoid vendor lock-in and ensure longevity. Organizing the storage by
data  source  and time (and possibly  by  incident/case)  makes  it  easier  to  manage and purge  when
appropriate.

3. LETS Processing Stages: As described, each processing stage takes input from the storage, does
some computation,  and  writes  output  back.  In  practice,  we  implement  stages  as  either  serverless
functions or containerized jobs orchestrated by an ephemeral framework (could be AWS Step Functions,
a Kubernetes job runner, or a simple orchestrator script). The major stages in our SIEM pipeline might
include: - Parsing & Extraction: Convert raw logs or data into structured form. For each raw file (say, a
chunk of firewall logs), a parser stage produces a normalized JSON or graph fragment. This is where
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LLMs might assist if the format is tricky. The output is typically a list of event objects or initial graph
nodes. -  Entity Graph Assembly: Take the parsed data and construct the semantic graph nodes and
edges.  For  example,  if  a  log  line  says  "User  U  downloaded file  F  from IP  I,"  we  create  nodes  for
User:U ,  File:F ,  IP:I  and edges like  User U -> downloaded -> File F  and IP I -> 
hosted -> File F .  Each event thus becomes a subgraph linking the entities involved. This stage
uses the MGraph library in memory to build the graph, then saves the graph (or the diff) as a JSON file
(e.g., in graph/hostXYZ/2025-06-18T12-13_events.graph.json ). - Correlation & Merging: This
stage looks at all the graph pieces from various sources and tries to connect the dots. For instance, the
EDR alert graph says "malware hash X on host Y", and a firewall log graph shows "host Y communicated
with IP Z", and an email log graph shows "user of host Y clicked link from IP Z". The correlator will
merge these into a single graph, identifying common entities (host Y, IP Z) and linking sequences of
events into an attack storyline. This can be rule-driven (join by common fields) and/or LLM-assisted (ask
the LLM if two pieces might be related, based on their data) depending on the complexity. The output is
a  unified incident graph representing the combined knowledge for  this  incident.  -  Enrichment &
Contextualization: Here  we fold  in  external  context:  attach asset  info  (what  is  host  Y?  production
server? who owns it?), attach threat intel (is hash X known malware? is IP Z blacklisted?), attach controls
mapping (which security control should have caught this, if any?). This may involve queries to other
databases or simply linking nodes to reference graphs (e.g., a vulnerability database graph or MITRE
ATT&CK knowledge base graph). After enrichment, the incident graph is not only a technical view of
events,  but  a  context-rich  representation of  the  incident  in  business  and risk  terms.  -  Analytics  &
Detection Logic: Although in  our  scenario  we started from a known alert  (malware detected),  the
system can also proactively detect patterns in the graph. This stage can run analytical queries on the
graph to find suspicious patterns (e.g., lateral movement paths, multi-stage attacks, privilege escalation
indicators) or apply machine learning on the structured data. Any findings (say, "These three seemingly
low-level events actually form a MITRE ATT&CK chain of Initial Access -> Execution -> Persistence") can
be added as new nodes/alerts in the graph. This is how the system can act as a true detection engine,
not just an incident assembler. Because we’re now operating on a highly curated dataset (the incident-
specific graph), such analytics are efficient and precise, in contrast to generic SIEM rules that run on a
firehose of logs. - Output & Reporting: The final stage takes the enriched, analyzed incident graph and
produces human-friendly outputs. This could include: - An interactive graph visualization (nodes and
links) accessible via a web UI. - A timeline view of events. - Natural language summaries generated by
an LLM (prompted with the graph data) – e.g. an executive summary of what happened and its impact. -
Automatic  report  documents  (in  Markdown/PDF)  for  compliance  or  post-incident  review,  with  all
evidence attached. - Integration back into ticketing or SOAR systems (e.g. create a Jira ticket with key
details, or trigger response playbooks). The key is that the heavy lifting of compiling the story and
evidence is done by the system, so the security team receives a package of actionable intelligence
rather than raw logs.

All these stages are orchestrated in a  serverless fashion. For instance, an initial trigger could be an
alert from an EDR system hitting a webhook; that launches a coordinator function which kicks off the
necessary  connectors  and stages  for  that  host  and alert.  Or  an  analyst  could  manually  initiate  an
investigation via a web interface by selecting an alert of interest, which triggers the pipeline. Under the
hood,  something (could be as simple as a Python script  using AWS SDK,  or  a Step Functions state
machine) coordinates the sequence: fetch data, wait for storage, parse, assemble graph, etc. Because
each step writes to storage and can be stateless, the pipeline can tolerate variations – e.g., if one data
source is slow, it doesn’t derail the whole process; the rest just waits for that file to appear.

Use  of  Open-Source  and  Standard  Tools: Notably,  this  architecture  leans  heavily  on  open
technologies. The graph database (MGraph-AI) is open source , the data formats are open (JSON,
Markdown), and the orchestration can be built with standard cloud services or workflow engines. This
avoids lock-in to any particular SIEM vendor. The philosophy is that  the knowledge (graphs, data) is
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the  valuable  output,  and  it  lives  in  portable  form,  while  the  processing  logic  can  be  adapted  or
reimplemented as needed. Organizations can extend or customize the pipeline by adding their own
stages or swapping components (for example, using a different LLM or an internal ML model at the
enrichment stage) without breaking the overall framework.

Now, to ground this in reality, let’s walk through an example incident to see how all these pieces come
together.

Workflow Example: Investigating a Malware Incident

Consider a scenario faced by a SOC in 2025: an alert comes in that  malware was detected on an
employee’s laptop. This could originate from an endpoint protection platform (EPP/EDR) like Microsoft
Defender or CrowdStrike, which flags a malicious file execution. In a traditional setup, this alert would
show up in the SIEM with perhaps a short description and some hashes or file paths. It would be up to
an analyst to investigate further by querying various logs. In our Ephemeral GenAI SIEM, however, the
response is largely automated and far more comprehensive. Here’s how it unfolds step by step:

Step 1: Alert Ingestion and Initial Graph Node Creation
The moment the malware detection alert is generated by the endpoint, it triggers our pipeline. This
could be via a webhook from the EDR to our cloud function or a scheduled poll of the EDR’s alerts API.
The first thing we do is create a  graph node representing the alert event in our knowledge graph.
This  node  might  have  attributes  like  alert_id ,  malware_name  (if  known),  file_hash , 
host_name , timestamp , and EDR_tool  (source). We save this initial evidence in our storage (e.g.,
graph/cases/incident123/alert.json ). This node is essentially a placeholder that says “We have

an alert about malware X on host Y at time T.” It’s the starting point of our investigation graph.

Step 2: Identifying Relevant Data Sources
Next, the system determines which data sources might hold relevant information for this alert. Based
on the alert details,  it  knows: -  The host involved (say,  HOST123 ).  -  Possibly the file hash or name
( malware.exe  with hash abc123 ). - The timestamp of detection. - The user logged into that host (if
provided by EDR).

Using this, the pipeline compiles a list of sources to query, for example: -  EDR Detailed Logs: Pull the
detailed telemetry from the endpoint agent around that time (e.g., what process executed, its parent
process, any registry or network activity captured). -  Host OS Logs: Query the Windows Event Logs or
sysmon on that host for events in a time window (perhaps 15 minutes before and after the alert) – this
might show how the malware got there (e.g., a PowerShell execution or a user login event). - Network
Logs: Check the enterprise firewall or proxy logs for any connections from that host, especially around
the time of infection (did it download something from an external URL? Connect to a command-and-
control server?). - Email Gateway: If there’s a suspicion the malware arrived via email (perhaps the file
name  or  user  behavior  suggests  it),  search  the  email  system  for  any  messages  to  the  user  with
attachments or links around that time. - Threat Intelligence: Look up the file hash abc123  in threat
intel  databases (VirusTotal,  internal TI  platform) for any known info (is  it  known ransomware? what
domains or IPs are associated with it?). -  Vulnerability Scans: Retrieve any recent vulnerability scan
report  for  HOST123  to  see  if  it  had missing  patches  that  could  be  relevant  (maybe the  malware
exploited a known vuln). - Asset Info: Fetch from CMDB what HOST123  is (laptop vs server, OS version)
and who it is assigned to (owner’s name, department). - Identity Logs: Pull recent authentication logs
for the user of  HOST123  – did that user’s account do anything suspicious (VPN logins, failed logins,
etc.) around that time?
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Not all  of these will  always be needed, but the system makes an informed guess of what could be
useful. Importantly, it doesn't yet collect everything everywhere; it focuses on this host, this user, and
this time slice.

Step 3: Data Retrieval (Load Phase)
For each identified source, a connector function is invoked. These run in parallel where possible. They
use the source’s native interface to get data: - The EDR connector calls the EDR API with the alert ID to
get the full event details and any related telemetry (perhaps the EDR provides a JSON report of the
incident on that host). - The Windows logs connector queries the logging infrastructure (or pulls from a
log archive) for events from HOST123  in the given timeframe, then filters to those relevant (Security
log,  Sysmon,  etc.).  -  The  proxy  log  connector  searches  proxy  records  for  HOST123  or  the  user’s
machine IP on that date. - The email connector looks up the user’s mailbox or the email gateway for
potential phishing emails. - The threat intel connector queries the hash and returns any matches. - Etc.

As each connector gathers data, it writes the raw results to our S3 storage under a unique path for this
incident. For example: 

case123/raw/EDR_HOST123.json

case123/raw/WinLogs_HOST123_0600-0630.log

case123/raw/Proxy_Host123_0600-0630.csv

case123/raw/VirusTotal_abc123.json

...

Some data might be large (e.g., logs), but we’re only pulling a time-bounded slice. If a source is
unavailable or returns nothing, that is noted (and can be flagged as a gap for later).

Step 4: Extraction and Graph Construction (Extract & Transform Phases)
Now parsing and interpreting begins. For each raw data file: - The EDR JSON is parsed to extract key
entities: the malware file (with its hash and name), the process that executed it, the user account on the
machine, any registry keys or persistence mechanisms noted, etc. Each of these becomes a node or
edge in the graph. For instance, we add a File  node for the malware (tagged with hash, name, size),
a Process  node (with process ID, name), and edges like Process -> created File  or User -> 
executed File , depending on what the EDR data says. - The Windows event log file is parsed (likely
with a predetermined schema, possibly using a library or even an LLM if needed for unusual event
formats).  We extract  events like logon attempts,  file write events,  or script  execution events.  These
become nodes (e.g., an event node or directly mapped to higher-level nodes: an event "User login from
X" might link the User  and Host  nodes with a "logged in from IP" edge). - The proxy logs are parsed
for  any  HTTP  requests  by  that  host.  Suppose  we  find  that  at  05:55  UTC,  HOST123  (or  its  IP)
downloaded  a  file  from  evilmalware.com/dropper.exe .  We  create  a  Domain  node
( evilmalware.com ), a NetworkRequest  node or edge from Host to Domain, and perhaps a File
node for dropper.exe  if we have details. Notably, this directly might explain how the malware got in
(downloaded from that domain). - The email search might find an email to the user at 05:50 with a link
to that same domain. If so, we create an Email  node (with sender, subject) and link it:  Email -> 
delivered URL -> Domain  and  User -> received -> Email . - The threat intel for the hash
might tell us the malware is “AgentX” malware family and that it contacts domain evilmalware.com .
We enrich the File  node with this info (malware family = AgentX) and link the Domain  node to an
ThreatIntel  node or mark it as malicious. - The vulnerability scan might show Host was missing a

certain patch; if the malware exploited that, it could be relevant. We could add a  Vulnerability
node and link Host -> has vulnerability .
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At this point, we have constructed a knowledge graph that sprawls across multiple data sources but
is centered on our incident. It might look like: 

User[Bob] --owns--> Host[HOST123] --hasProcess--> Process[malware.exe] --

fileHash--> File[abc123]

User[Bob] --received--> Email[ID456] --link--> Domain[evilmalware.com]

Host[HOST123] --made HTTP request--> Domain[evilmalware.com]

Domain[evilmalware.com] --hosted file--> File[abc123]

File[abc123] --is type--> MalwareFamily[AgentX]

File[abc123] --detectedBy--> Alert[EDR-123] (the original alert node)

Host[HOST123] --hasVulnerability--> Vulnerability[CVE-2024-XXXX]

...

Every node/edge also carries metadata like timestamp (for events), source reference (which raw log or
record supports it ), etc. This graph is saved as case123/graph/merged_graph.json  for further
use.

Step 5: Correlation and Hypothesis Linking
With all  pieces  in  the graph,  the system now correlates  the sequence of  events.  Often this  simply
emerges from the graph connections: we can see an email led to a download which led to execution
which led to an alert. However, there might be missing links or multiple possibilities. For example, if we
didn’t find the email, we might have the download but not how it was initiated. In such cases, we could
query other sources (maybe the user visited that URL via web browser rather than email – we might
then check browser history logs or DNS logs). The pipeline can use an LLM here to identify any apparent
gaps or suggest additional pivots: e.g., "We saw a malicious file download, but no email – maybe the user
navigated there manually or via a website.  Check web proxy logs further back or DNS logs." This might
prompt an additional data fetch (going back to Step 3 for another round). The iterative nature means
the investigation can deepen as needed, akin to a human analyst following intuition, but guided by the
AI to not overlook paths.

Assuming we have a fairly complete graph, the system can then piece together a narrative. It identifies
chains of events. In our example, one chain might be: Email -> User click -> Domain -> File 
download -> Malware execution -> EDR detection . This can be mapped to the MITRE ATT&CK
framework stages: Recon (email phishing) -> Initial Access (user clicks link) -> Execution (malware runs) -
> C2 (if the malware connected out, not given here but if it did) -> Detection (response). The system can
tag each part of the graph with MITRE technique IDs (if known) for standardized terminology.

Step 6: Enrichment of Risk and Impact
Using the graph, we now enrich with business context (some of this we started in Step 4 with asset info,
but here we focus on impact analysis): - What data could have been at risk? If  HOST123  is a laptop,
perhaps it has access to certain databases or contains certain sensitive files. If our system has a link to
data classification (say we know this user handles finance data), we note potential data compromised. -
Who needs to know? We see the host owner is Bob in Finance. So likely the Finance IT partner or CISO
needs to be informed if this is serious. We tag stakeholders. - We also calculate a severity or risk score
for the incident: e.g., because malware executed and connected out, and the host had vulnerabilities,
this is high risk (potential breach). Or if EDR stopped it and nothing further happened, it's moderate. - If
the graph indicates any security control failure (say the email was phishing that bypassed filters, or the
user had local admin rights allowing execution), we note those as lessons learned links in the graph (e.g.,
a node "SecurityControl=Email Filter" with an edge "failed to detect -> EmailID456").
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Step 7: Reporting and Action
Finally, the system generates outputs: -  Graphical View: An interactive graph or a visual diagram is
produced showing the devices, users, and events with arrows connecting them (timeline annotated).
This helps the SOC or incident responders to validate the sequence and see if anything is missing. -
Executive Summary: A  natural-language summary is  crafted (using an LLM prompt filled with key
graph details) describing what happened: e.g.,  "On June 18, 2025, a targeted phishing email sent to Bob
(Finance) led to the download of malware AgentX on his laptop HOST123. The malware executed but was
caught by endpoint defenses. Analysis shows the malware attempted to connect to evilmalware.com, which is
a known bad domain. No data exfiltration was observed. Bob’s machine will be re-imaged and credentials
reset  as  a  precaution." This  summary is  tailored for  a  leadership  audience,  focusing on impact  and
resolution. - Technical Report: A more detailed report is compiled for the technical team. This could be
a Markdown document that enumerates the indicators (file hashes, domains), lists all related events
(with timestamps and source logs references), and maps the incident to MITRE ATT&CK tactics. Because
our pipeline retained all evidence, we can attach or inline the actual log snippets that correspond to
each event for transparency. -  Tickets/Alerts: If certain actions are needed (e.g., block the domain on
firewall, reset user password, patch the vulnerability on that host), the system can automatically create
tickets in the ITSM system or send alerts to the responsible teams, complete with context of why that
action is needed. -  Learning Feedback: The incident’s data could be fed into detection rules for the
future (maybe writing a new rule that if an email links to that domain, alert immediately, or updating
SIEM correlation with this pattern). In our architecture, we might store this pattern as a reusable story
graph that can be searched for in future data (like a template of how AgentX attacks look).

All  the  results  are  stored  and  indexed  in  the  research  hub  (which  could  be  the  knowledge  graph
repository for all incidents). If a similar incident happens next month, the CISO can even query: "Have we
seen evilmalware.com before?" and the system will find that domain node from this incident graph and
show the past context. This historical memory, built on graphs, becomes incredibly valuable for threat
hunting and retrospectives.

Step 8: Disposal and Reset
Once the analysis is done and outputs are delivered, the ephemeral compute infrastructure used can be
completely torn down. The data (graphs, raw logs) remains in the storage for future reference, but the
analysis environment (containers, memory structures) is gone. If we need to revisit or redo analysis, we
simply re-run the pipeline on the stored data or fetch new data. The system is ready to handle the next
incident with a fresh set of functions, ensuring no cross-contamination of data in memory and optimal
use of resources.

This example demonstrates how Ephemeral GenAI SIEM handles an incident in a way that contrasts
sharply  with  a  traditional  SIEM  workflow.  Instead  of  an  analyst  manually  pulling  logs  and  piecing
together  clues  for  hours,  the  system  assembled  a  comprehensive  narrative  in  minutes,  with  full
evidence attached. The analyst’s role shifts to validation and response decision-making, supported by
the system’s findings. Crucially, this was done without pre-ingesting all corporate logs into a single
system, and without maintaining a standing army of servers crunching data 24/7. The pipeline only
spun up in response to the event, used targeted data to enrich context, and stood down after delivering
insight.
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Technology Stack and Implementation

To implement the Ephemeral GenAI SIEM, we leverage a combination of cloud services, open-source
libraries, and custom code – much of which is developed in the open as part of Dinis Cruz’s research
initiatives. Below are key components of the tech stack and how they contribute to the solution:

Cloud Object Storage (Data Lake): A service like Amazon S3, Azure Blob Storage, or Google
Cloud Storage serves as the backbone for storing all inputs and outputs. This is the system’s
long-term memory. We organize the bucket into logical folders (by incident or date) and use file
naming conventions for versioning. Because this storage is practically infinite and cheap, we
don’t  worry  about  running out  of  space –  we can keep raw evidence for  compliance needs
without expensive hot storage costs. And since the storage is separate from compute, it naturally
enables  the  ephemeral  compute  model  (any  stateless  function  can  access  the  data  when
needed, without local state).

Serverless Compute & Orchestration: Wherever possible,  we use serverless functions (AWS
Lambda, Azure Functions, GCP Cloud Functions) for connectors and lightweight processing tasks.
For  heavier  or  longer  tasks  (like  parsing  a  large  log  or  running  an  ML  model),  we  use
containerized jobs on a service like AWS Fargate or Azure Container Instances, or Kubernetes
pods in an on-demand cluster. The orchestration can be handled by a workflow engine (e.g., AWS
Step Functions or Azure Logic Apps) which can sequence tasks and handle retries, or by a custom
lightweight orchestrator (even a Python script or a directed acyclic graph defined in something
like Apache Airflow, though managed solutions are preferred to keep with the serverless ethos).
The use of managed cloud functions means we automatically scale – if ten incidents come in at
once, ten concurrent pipelines run without us pre-provisioning servers. And if none occur for
days, we pay nothing during that idle time.

MGraph-DB (MGraph-AI): This is the in-memory graph database library we use to handle graph
operations. It's written in Python and designed to integrate well with serverless environments

. We embed this library in our functions or containers that need to build or query graphs.
MGraph provides a Pythonic API to create nodes and edges, run filters, and then serialize the
graph to JSON. It’s highly optimized for our use case – type-safe, minimal dependencies, and
with JSON as the primary persistence format . This means we can easily take the output
of one LLM call, stick it into MGraph structures, merge with another, and save – all within, say, a
single  AWS Lambda execution.  By  using  MGraph,  we  avoid  the  need  for  an  external  graph
database server (like Neo4j or JanusGraph) which would break our serverless model and add
admin overhead. 

Generative  AI  Models: We  incorporate  LLMs  at  specific  junctures.  These  could  be  via  APIs
(OpenAI GPT-4,  Azure OpenAI service,  etc.)  or open-source models we host ourselves if  data
sensitivity is a concern. Key usage patterns include:

Parsing Unstructured Data: For example, feeding an raw log line or an error message to an
LLM prompt like “Extract the following fields if present: timestamp, source IP, destination URL,
user agent, error code…” and have it output JSON. Because we supply a schema and examples,
the LLM’s response can be made very consistent.
Semantic Mapping: If we have two sets of entities (like processes on a host and threat intel
about malware tactics), we might ask the LLM to find relationships – e.g., “Given these process
names and this list of known malware traits, which processes seem related to known malware
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behavior?” – returning any matches or suspicions which we then turn into graph links (with a
confidence score).
Summary Generation: Using an LLM to turn the graph data into English (for reports or
explanations).
Question Answering: Enabling an analyst to ask follow-up questions in natural language. For
instance, “Was any sensitive data accessed by this malware?” The system can translate that into a
graph query (looking for any access to certain databases or files in the graph) and respond with
an answer or further analysis.

We ensure these calls  are  stateless and idempotent parts  of  the pipeline.  Each LLM invocation is
treated as a function: input data goes in, output data comes out. We do not rely on hidden model state
or memory between calls. And if needed, we can log the prompts and responses for audit (especially
important if using external APIs). If an LLM step is non-deterministic (slight variance in phrasing, for
example), it doesn’t affect the integrity of the graph data since we enforce structure. In essence, we
treat LLMs as powerful parsers and correlators under tight control.

No-Code / Low-Code Interfaces: To truly empower rapid development, we incorporate no-code
principles. This can manifest in a few ways:
Prompt-based Pipeline Configuration: We can describe a new data source or transformation in
English (or a simple DSL), and use an LLM (in a development context) to generate the code
needed. For example, an engineer might write a prompt: “Connect to the HR system API and
retrieve the employee record for a given username, then output name, department, manager” –
the LLM can produce a connector code snippet in Python which can then be reviewed and
deployed. This significantly accelerates integration of new sources.
Graphical Workflow Orchestration: Utilizing tools where possible that let us visually define the
pipeline (some cloud providers offer drag-drop workflow designers). Even if under the hood it’s
code, it provides a clear picture for architects and allows adjustments without digging into code.
Interactive Notebooks and Testing: We maintain a library of Jupyter notebooks for developing
and debugging pipeline steps. Analysts can use these notebooks to do ad-hoc analysis on the
data lake by loading the graphs and querying them using familiar tools. This is a form of low-
code interaction with the system, making it feel more like using an analysis tool than
programming.

The bottom line is that adding a new correlation rule or data source doesn’t require writing thousands
of lines of Java and deploying a heavy app (as might be with older SIEM customizations). It can be as
simple as writing a prompt or a few lines of Python, which our GenAI helpers and frameworks then
integrate into the larger system. This encourages experimentation and quick iteration – essential for
keeping up with evolving threats.

Visualization and UI: While  a  full  SIEM product  would have a  polished UI,  our  architecture
allows  for  flexible  front-ends.  We  can  use  open-source  tools  like  Grafana  or  Kibana  for
dashboards, since our data is in JSON and can be indexed. For graph visualizations, we have
used Graphviz to generate diagrams or libraries like D3.js for interactive web views. Even just
rendering  the  connections  as  a  network  chart  in  a  web  app  can  give  analysts  a  powerful
exploratory interface. The UI layer is kept thin and separate – it talks to the storage or an API to
retrieve incident data and displays it, without containing heavy logic. This means the solution
can be integrated into existing portals or wiki pages (e.g., an incident wiki page that embeds the
graph image and links to evidence files). 

Security  and  Access  Control: Given  the  sensitive  data  involved,  strong  access  control  is
implemented at the storage and function levels. Data in the lake is encrypted and segmented by
case. Only the functions with need-to-know can read certain paths (for example, a connector that
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writes raw data might have rights to write in  raw/  but not to read everything). The output
reports can be pushed to a secure SOAR or case management system that already has role-
based access for the SOC. Additionally, because we minimize long-lived components, the attack
surface is small – but we still secure the pipeline (e.g., ensuring the LLM calls do not leak data to
external logs, using self-hosted models for highly sensitive orgs, and auditing all access to the
storage).

In practice,  implementing this stack has been greatly accelerated by open-source contributions. For
instance,  the  MGraph-AI  library  was  released  as  open  source ,  meaning  anyone  can  use  or
contribute to it for their own GenAI+graph projects. The LETS pipeline concept was documented and
shared ,  providing  a  template  that  others  have  begun  to  follow  for  similar  deterministic  AI
workflows. This white paper itself, co-authored by Dinis Cruz and ChatGPT, demonstrates the no-code
philosophy: using AI to articulate and refine the architecture. 

Benefits and Future Outlook

Adopting the Ephemeral GenAI SIEM architecture yields numerous benefits for organizations striving to
improve their security operations:

Significant Cost Reduction: By eliminating the need to ingest and index all security data into a
single system, organizations can avoid the steep licensing and storage costs of traditional SIEMs.
Expensive “hot” storage in SIEM is replaced by cheap object storage. Compute costs are incurred
only when needed, and even then, they are granular (you pay for a few Lambda invocations and
container  runs,  not  for  an  entire  24/7  server  cluster).  Edge  Delta’s  analysis  suggests  that
decentralized  processing  can  lower  observability  costs  by  up  to  95% ,  and  our  approach
follows a  similar  ethos  of  processing data  at  the  source  and storing intelligently.  Teams no
longer have to make painful choices about which logs to keep – they can retain everything in raw
form without breaking the bank, knowing that the system will intelligently access what’s needed.

Improved Detection and Faster Response: By having  full context on demand, analysts can
get to root cause and impact much faster. The system automates the grunt work of correlation,
so the mean time to understand an incident plummets. Instead of chasing down information
across  systems,  responders  get  a  coherent  story  and  can  focus  on  response  actions.  The
inclusion of AI-driven analysis means subtle connections (that might be missed by rigid rules)
can be uncovered – for example, the system might flag that two seemingly unrelated alerts are
connected by a common domain or technique, thereby detecting multi-stage attacks that evade
single-point  detections.  Overall,  security  monitoring  moves  from  a  reactive,  after-the-fact
posture to a more proactive and informed stance, as the system can continuously integrate new
intelligence and even simulate "what-if" on past data (since all data remains accessible).

Less Noise,  More Signal: The combination of  focused data gathering and AI-driven context
means alerts  generated by this  system can be of  much higher fidelity.  We’re effectively  pre-
triaging  alerts  by  enriching  them  immediately.  An  alert  that  reaches  a  human  now  comes
packaged  with  its  context  –  reducing  the  chance  it’s  a  false  positive  or  irrelevant.  By
incorporating  risk  and  business  context,  the  system  can  also  prioritize  incidents  better.  For
example, a malware on a test machine vs. on a finance server can be automatically flagged with
different severity. This addresses the notorious alert fatigue problem  – analysts spend time
on what matters, as trivial or spurious events are filtered out or contextualized as low priority.
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Transparency  and  Trust: Thanks  to  the  LETS  architecture,  everything  the  system  does  is
traceable.  This  is  vital  in  security  where  decisions  (like  ignoring  an  alert  or  taking  a  costly
response action) need justification. With our approach, any alert or non-alert decision can be
backed by the saved evidence and processing steps. The security team and management can
gain trust in the AI components because they can always inspect why something was flagged or
not. This is in stark contrast to some AI-based security products that act as mysterious black
boxes.  Furthermore,  having all  intermediate data and final  outputs in accessible files means
during audits or incident post-mortems, the team can share detailed records with regulators or
internal audit, demonstrating diligence and thoroughness.

Flexibility and Customization: Every organization’s environment is unique, and threats evolve.
The open, modular nature of Ephemeral GenAI SIEM means it can be tailored to specific needs.
New data sources (say, a custom application log) can be added by writing a small connector and
parser – without waiting for a vendor’s next release. Detection logic can be adjusted on the fly; if
a certain false positive keeps occurring, the team can tweak a stage to filter it  out or add a
condition, and because the pipeline is code and files, version control and testing of that change
are straightforward. You are not locked into the capabilities of a vendor’s engine; you essentially
have the framework to build exactly what you need, on top of open infrastructure. This also
future-proofs the organization –  as new technologies like better  LLMs or  new data analytics
frameworks appear, they can be integrated into the pipeline at the appropriate stage.

Scalability: The serverless, on-demand nature of this architecture inherently supports scaling to
very large environments or  spike events.  If  there’s  a  widespread incident  (e.g.,  a  new worm
affecting  hundreds  of  hosts),  the  system can spawn parallel  analysis  for  each affected host
without running out of capacity (subject to cloud limits, which are generally high). Traditional
SIEMs often fall over in such scenarios due to query load or simply generate an unmanageable
number of alerts. In our design,  more data or more incidents simply mean more parallel
functions, and the cloud handles that scaling. This elastic capability means the SIEM can handle
everything from routine daily alerts to crisis situations with equal efficacy.

Alignment  with  Modern  IT  and  SecOps: As  organizations  adopt  DevSecOps,  cloud-native
deployments,  and agile  methodologies,  they  need security  tools  that  fit  into  that  paradigm.
Ephemeral  GenAI  SIEM is  inherently  aligned with  these modern practices  –  it’s  cloud-native,
defined as code, and can be integrated into CI/CD (for example, one could automatically run
certain security queries or graph analyses whenever a new application version is deployed, as a
form of  continuous  assurance).  It  also  pairs  well  with  the  “data  mesh”  concept,  where  data
remains distributed and query comes to the data. In essence, it  transforms the SIEM from a
monolithic silo into a mesh of security data and logic woven throughout the environment, which is
more suited to the microservice and multi-cloud world.

Future Outlook: This architecture opens the door to numerous future advancements. For instance: -
Real-Time Stream Processing: While our described approach is trigger-based and batch on demand,
the same principles can be applied to streaming data. One could set up continuous log watchers that
perform lightweight edge processing (filtering and summarizing streams locally,  only sending high-
value signals to a central graph). This would combine the best of both worlds: low-latency detection
with central graph correlation. - Automated Response Integration: With such rich context, automated
playbooks can be more precise. For example, if an incident graph clearly shows a compromised user
account, an automation could disable that account within minutes of the detection, because the system
has high confidence and evidence of malicious activity. Essentially, the graph can feed a SOAR platform
with machine-readable context to trigger targeted response actions. - Community and Open Sharing:
If  many  organizations  adopt  a  graph-based  SIEM  approach,  they  could  share  anonymized  graph
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patterns of attacks. Imagine a shared repository of attack graphs (similar to how malware signatures
are shared) – when one org experiences a novel attack and graphs it, others could use that to scan their
own  environment  for  similar  patterns.  This  collaborative  detection  model  could  greatly  enhance
industry-wide defenses. The use of common ontologies and open schemas in our approach makes such
sharing feasible (no proprietary log formats, just graphs of TTPs that everyone can understand). -  AI-
augmented Threat Hunting: Analysts could leverage the system to ask high-level questions and have
the AI do the heavy lifting. For instance, "Show me any abnormal admin logins in the past week correlated
with large data downloads" – the system could comb through the knowledge graphs of the week and
present findings. This flips the traditional hunting (where humans write queries and parse outputs) to a
more intuitive AI-assisted exploration. - Beyond Security – IT Operations and Risk Management: The
same platform could be extended to IT ops and compliance use cases. Since it’s essentially a general
graph of IT events and entities, one could detect performance anomalies, or verify compliance controls,
by adding appropriate analysis stages. This could blur the line between SIEM, AIOps, and GRC tools,
resulting in a unified knowledge-driven oversight of the digital environment.

Conclusion

The Ephemeral GenAI SIEM represents a bold re-imagining of security monitoring. By harnessing the
power of cloud scalability, the expressiveness of knowledge graphs, and the intelligence of generative
AI, it addresses the long-standing pain points of traditional SIEMs: high cost, overwhelming noise, and
lack  of  context.  Our  design  choices  –  from  using  S3  as  a  database,  to  treating  every  step  as  a
reproducible data transformation, to keeping the entire system disposable – were driven by practical
experiences in building AI-assisted systems that needed transparency and reliability . 

In implementing this system, we've adhered to a philosophy of openness (open formats, open source
tools) and collaboration between human experts and AI. The result is a SIEM that scales by doing less
upfront (no more ingest-all-the-things), and  accomplishes more by thinking smarter – connecting
dots that were previously siloed and presenting solutions, not just alerts.

For technical  CISOs and security leaders,  this approach offers a path to finally escape the trade-off
between comprehensive security visibility and operational feasibility. You no longer have to accept that
“we only use 10% of our data” or that “the SOC is drowning in false alerts.” With Ephemeral GenAI SIEM,
you can truly use all your data in a targeted way, cut through the noise with AI-driven context, and do
so  on  infrastructure  that  flexibly  scales  with  your  needs.  It  transforms the  SIEM from a  static  log
aggregator into a living, breathing analytical assistant that grows in knowledge every day.

In publishing this white paper, our hope is to share a blueprint that others can adapt and build upon. All
the  core  components  discussed  are  available  through  open  research  and  code  (for  example,  the
MGraph-DB library and example pipelines ). We encourage the community to experiment with
these ideas, contribute improvements, and collectively push the state of the art in security operations.
The challenges we face in cybersecurity are immense and ever-changing, but with approaches like this –
combining the best of human strategy and AI capability – we have a fighting chance to stay ahead.

Dinis Cruz and ChatGPT Deep Research, June 2025

Sources: The concepts and implementations described here are based on Dinis Cruz’s open research on
deterministic GenAI pipelines and semantic graphs , industry analyses of SIEM limitations

,  and  the  practical  lessons  learned  from  building  GenAI-powered  security  and  news  analysis
platforms . 
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Why Traditional SIEM Isn’t Enough—Peris.ai Brings Real Intelligence
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Overcoming the Limitations of Centralized Monitoring | Edge Delta
https://edgedelta.com/company/blog/overcoming-limitations-centralized-monitoring

Introducing LETS: A Deterministic Data Pipeline Architecture | Dinis Cruz posted on the
topic | LinkedIn
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and Serverless Apps
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Building Semantic Knowledge Graphs with LLMs: Inside MyFeeds.ai's Multi-Phase Architecture
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Creating a Secure GenAI News Feed: When the Best Defence is Not ...
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GenAI bots that make security teams 10x more productive | Dinis Cruz
https://www.youtube.com/watch?v=PoFoh89OBNs
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