
Evolving Semantic Graphs and Ontologies with
LLMs and MGraph-DB
Introduction:
This FAQ-style white paper addresses key technical questions about Dinis Cruz’s approach to building
and evolving semantic knowledge graphs using Large Language Models (LLMs) and the  MGraph-DB
platform. The focus is on how this architecture differs from traditional Semantic Web frameworks (like
OWL  ontologies)  and  how  it  leverages  MGraph-DB’s  unique  design.  We  will  discuss  concept
identification, confidence scoring, reasoning methods, graph lifecycle management, and the idea of an
“ontology  of  ontologies.”  Each  section  below  poses  a  question  and  provides  an  expanded  answer,
highlighting the professional and business value of this approach for a technically literate audience.

Q1: How does your semantic graph approach handle concept
identifiers compared to OWL?

Handling of Concept Identifiers:
In a traditional OWL ontology, each concept is identified by a global IRI/URI – a strict, often lengthy
identifier ensuring unambiguous reference across datasets. Dinis Cruz’s semantic graph approach takes
a more flexible and organic path in assigning concept identifiers. Instead of predefining every concept
with a fixed global ID, the system allows LLMs to  propose concepts in natural language and uses
context or mappings to resolve their identities over time. Key differences include:

Human-Friendly Labels vs IRIs: Concepts extracted by the LLM are usually  labeled in plain
language (e.g. “Cardiology” or “CEO persona”) without immediately binding them to a formal
URI.  This  makes  initial  graph  construction  quick  and  relatable.  By  contrast,  OWL  demands
something  like  <http://example.com/ontology#Cardiology>  upfront.  In  our  graphs,
each node does have a unique internal ID (for example, a UUID or auto-increment index), but it’s
used behind the scenes for linking; the emphasis is on readable labels that can later be aligned
or refined.

Contextual Uniqueness: The approach leverages context to distinguish concepts. Two teams
might independently  have a concept called “Asset”  in  their  respective sub-graphs,  and that’s
acceptable initially. We don’t force a single canonical “Asset” definition at creation time. In OWL,
by contrast, using the same name would imply the exact same concept (or you’d create separate
IRIs).  With  MGraph-DB,  each  “Asset”  node  lives  in  its  graph  namespace,  and  if  they  truly
represent  the  same  real-world  concept,  a  mapping  process (often  LLM-assisted)  will  later
connect or merge them. Essentially, identity is established through relationships and mappings,
not just by a globally unique name.

Emergent Alignment vs Pre-Coordinated Ontology: Rather than predetermining a universal
ontology of all concepts, Cruz’s method lets the knowledge graph  emerge and evolve. The LLM
might introduce new concepts as needed when processing data (for example, a new relationship
“specializes in [Field]” appears while analyzing an article). These are added to the graph on the
fly.  Later,  during  a  curation  phase,  these  concepts  can  be  reconciled  with  existing  ontology
entries or given persistent identifiers if warranted. OWL systems tend to require the ontology’s
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classes and properties to be designed upfront or continuously maintained by experts; here the
ontology grows dynamically, guided by LLM output and human review.

No Strict IRI Schema Requirements: MGraph-DB does not require using HTTP IRIs for nodes; it
stores  graph  data  in  a  JSON-based  structure.  If  needed,  it  can  store  a  concept’s  canonical
reference (e.g. an external ontology ID) as an attribute, but it doesn’t force every node to carry
an  IRI.  This  flexibility  means  quicker  integration  of  diverse  data  sources:  you  can  ingest
information without  painstakingly  converting all  identifiers  to  a  single  naming scheme.  (The
graph can always be exported to standard formats like RDF/Turtle with IRIs once things are
aligned, but during iterative development the overhead is minimized.)

Implications:
This approach trades a bit of up-front formality for agility. It acknowledges that in practical, evolving
systems, you often encounter the same idea described in different ways. Instead of insisting on one
name from day one, it captures all the variations and then unifies them through analysis. MGraph-DB
supports this by allowing duplicate or similar labels internally (since each node has its own GUID) and
by making it easy to add equivalence links or merge nodes later. The result is a semantic graph that
starts  with the language people actually  use and  systematically  moves toward consolidation,
rather  than  starting  with  a  rigid  ontology  that  might  not  fit  all  future  data.  In  summary,  concept
identifiers  in  this  system  are  handled  more  fluidly  than  in  OWL:  they  are  initially  simple  and
contextual,  and they become  persistent and globally  unique through iterative refinement and
mapping, rather than being fully predetermined.

Q2: How are the various confidence or relevance scores
calculated and what do they mean?

Origin of Scores in the System:
Throughout the LLM-driven graph pipeline, the system attaches numeric scores to certain outputs –
these can represent  confidence, relevance, or strength of a relationship. Unlike deterministic ontologies
where  a  fact  is  either  present  or  not,  an  LLM-generated  knowledge graph benefits  from having  a
gradation of certainty or importance. Here’s how these scores are produced and used:

LLM-Generated Relevance Ratings: In many cases, the LLM is prompted not only to extract
entities and relationships, but also to assess the relevance or confidence of those findings. For
example, when linking a persona’s interest graph to a set of articles, the LLM might be asked:
“For each article, identify which persona topics it covers and give a relevance score from 0 to 10.”
A concrete example: the model might report that a particular article has 3 topic matches with a
persona and assign an overall relevance score of 8.5/10. This number is a qualitative judgment
by the AI – essentially how strongly it believes the article aligns with the persona’s interests. It
could  be  influenced  by  the  number  of  matching  concepts  and  the  significance  the  model
perceives  those  concepts  to  have  in  context.  The  scale  (often  0-1  or  0-10)  is  chosen  in  the
prompt; 8.5/10 here would indicate a high relevance, whereas something like 3/10 would be only
mildly relevant.

Confidence Scores on Extracted Facts: Similarly, when the LLM extracts a fact or relationship, it
can be instructed to include a confidence indicator. For instance, if it identifies an entity “Cloud
Computing” as a key topic of an input text, it might output that with a confidence of 0.95 (on a
0–1 scale). This would mean the model is 95% sure “Cloud Computing” is correctly identified.
These  confidence  scores  are  generally  subjective  probabilities  from the  model’s  perspective.
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They are not guarantees of truth, but they provide a useful heuristic. A lower confidence (e.g. 0.6)
might flag an item for human review or for cross-checking against the knowledge base.

Algorithmic or Composite Scores: Not all scoring is left purely to AI guesswork. In some parts
of the workflow, scores are computed by deterministic logic based on graph data. For example, if
multiple  evidence  sources  in  the  knowledge  base  support  a  relationship,  the  system  might
aggregate that into a higher confidence. In threat modeling use-cases, one could imagine a “risk
score” computed from connected nodes (number of incidents linked to a threat,  plus impact
level) – that’s a form of score derived from graph analytics. The key point is that the architecture
supports storing these numeric attributes on nodes/edges, whether they come from an LLM’s
qualitative judgment or from a script’s calculation.

Meaning and Usage of Scores:
A score is only as meaningful as the process behind it. In this system, scores are used to prioritize and
filter knowledge:

A high relevance score (say 8.5/10) for an article under a persona’s topic means that article is
very likely to be selected for that persona’s curated feed or report. In the MyFeeds example, only
the top-scoring articles (e.g. five articles with highest scores above a threshold) were chosen as
the personalized digest, ensuring the user sees content most aligned with their interests. Here
the score effectively ranks content by pertinence.

Confidence scores serve as a guide for trust and verification. If an extracted relationship has low
confidence, the system can mark it for a human-in-the-loop to verify or ignore it until further
evidence is gathered. High-confidence facts might be ingested automatically into the knowledge
base, whereas lower-confidence ones might need an additional LLM query or a rule-based check.
In  other  words,  the  graph evolves  conservatively,  integrating only  those facts  that  pass  a
confidence bar (much like a precision threshold) to maintain overall quality.

Over time, these scores can be updated. If  later data or user feedback confirms a once-low-
confidence fact, its score can be raised. If a highly-scored relationship is later contradicted by
new information (or turns out to be a hallucination), it can be rescored downwards or removed.
Because the graphs are version-controlled (more on that later), any change in scores or filtered
inclusion of nodes can be tracked and justified.

In summary, confidence and relevance scores in this system are quantitative signals of certainty and
importance attached to graph elements. They are calculated either by the LLM (based on its internal
assessment)  or  by  auxiliary  logic,  and  they  mean  to  guide  the  flow  of  information –  what  gets
emphasized, what gets secondary treatment, and what might require human confirmation. This adds
an important layer of transparency and tunability to LLM-generated knowledge graphs: stakeholders
can see why a piece of information was included (it had a high score), and they can decide to adjust the
process (for instance, “only include articles with score >7” or “double-check any relationship below 0.8
confidence”). It’s a pragmatic way to blend the  fuzzy intuition of AI with the precision needs of a
business.
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Q3: What kind of reasoning is used in your system? Do you rely
on Description Logic like OWL, or take a stochastic/LLM-driven
approach?

The reasoning in this architecture is largely  LLM-driven and pragmatic rather than based on formal
description logic. Traditional OWL ontologies utilize description logic reasoners to infer new facts (e.g.,
deducing  class  hierarchies,  checking  consistency,  applying  transitive  properties  automatically).  In
contrast, Dinis Cruz’s system leans on the power of LLMs combined with lightweight code-based rules
for reasoning. Here is how it works:

LLM  as  the  Primary  Reasoning  Engine: The  heavy  lifting  of  understanding  context  and
proposing  connections  is  done  by  the  LLM  (a  large  language  model).  This  is  a  stochastic
approach  –  meaning  it  uses  probability  and  pattern-matching  learned  from  data,  not  a
guaranteed logical calculus. For example, if given a software architecture document, the LLM
might  infer that “Module A depends on Module B” because it reads between the lines, even if
that dependency wasn’t stated in a formal way. This kind of reasoning is implicit and generative.
It’s very powerful for uncovering links or insights that aren’t explicit, but it doesn’t follow strict
logical  proof.  We accept that  and mitigate risks (like possible errors)  by capturing the LLM’s
output in structured form and then verifying it as needed.

No Built-in OWL Description Logic Reasoner: We do not run a classical OWL reasoner on the
graph to derive entailments. For instance, if the ontology says “Every X is a Y” and we have an X
node, an OWL reasoner would automatically classify that node also as a Y. In our system, such
hierarchical inferences would either need to be handled by the LLM (which could be instructed to
output types for each entity)  or by a simple code routine.  We aren’t  using a DL reasoner to
enforce or compute class relationships;  instead, we maintain logical  consistency through the
design of our data model and validation tests. This approach is closer to how knowledge graphs
in industry often work – they might adhere to an ontology schema, but they don’t always run a
reasoner continuously. It sacrifices some of the guaranteed completeness of a formal ontology
in exchange for flexibility and performance.

Rule-Based  and  Deterministic  Logic  (Where  Applicable): Although  we  lean  on  LLMs,  we
complement them with deterministic reasoning steps for things that are well-defined. A good
principle Dinis  follows is:  “Only  use LLMs for  what  they are uniquely  good at,  and use code for
everything else.” That means if we need to enforce a rule like “every User  node must have an
email  property,”  we don’t  ask the LLM to check that  –  we write  a  simple test  in  code.  In

practice, after the LLM generates the graph data, we might run a suite of  graph data tests
(similar to unit tests) to ensure logical constraints and business rules are satisfied. For example,
a rule-based check could flag any node labeled “Company” that isn’t linked to a “Sector” node (if
our domain requires every company to be categorized). These kind of checks act as a lightweight
reasoner, ensuring the graph doesn’t violate known constraints. They’re not as sophisticated as
OWL DL inference, but they are human-understandable and debuggable.

Human-in-the-Loop Reasoning: Another form of reasoning in the system comes from human
experts reviewing and curating the output. If an LLM posits a relationship that “Technology X is a
subtype of Strategy Y” and scores it  somewhat low, a human can decide if  that reasoning is
sound. Essentially, some reasoning tasks (especially in complex domains like cybersecurity or
finance) are deferred to subject matter experts who use the graphs and provide feedback. Their
feedback may translate into new rules (“actually, X should never be subtype of Y, it should be
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related  via  uses  relationship”)  or  into  corrections  in  the  knowledge  base.  Over  time,  this
expert feedback becomes part  of  the system’s reasoning process,  because the pipeline can
incorporate those new rules or examples in future LLM prompts (making the AI reasoning more
accurate in the next iteration).

Why  Not  Full  Semantic  Reasoners?: It’s  worth  noting  why  this  approach  avoids  a  full  DL
reasoner. Performance and determinism are part of the reason. MGraph-DB is designed as a
memory-first, JSON-backed graph store with an emphasis on speed and integration with code.
Running an OWL reasoner on a large graph can be slow and opaque, and doing so continuously
in a dynamic, evolving graph scenario might be impractical. Instead, we achieve many of the
benefits  (like  catching  inconsistencies  or  inferring  obvious  connections)  through  structured
outputs  and  validations.  The  LLM’s  structured  output  schema  can  be  seen  as  a  kind  of
reasoning template – for example, if we expect a  Person  node to have a  birthDate ,  we
include that in the schema so the LLM will try to fill it. This way the LLM is guided by a pseudo-
ontology to output logically complete data. Then our code tests check nothing critical is missing
or contradictory. This two-layer approach (AI + code) yields a system that is  deterministic in its
processing pipeline (you can rerun it on the same input and get the same structured result) even
though the AI inside is stochastic.

In summary, the system favors an LLM-driven approach to reasoning, augmented by deterministic,
rule-based  checks and  human  oversight.  It  does  not  use  OWL’s  description  logic  engines  for
automated inference; instead, it uses the intelligence of the LLM to propose links and the rigor of code
to enforce clear rules. This results in a solution that is both  creative and flexible (thanks to AI) and
controlled and explainable (thanks to a transparent pipeline). For a business context, this means we
get the best of both worlds: rapid, AI-generated insights and a clear audit trail of how conclusions were
reached, without the black-box complexity that formal semantic reasoners can introduce.

Q4: How are the graphs produced by the LLM stored, managed,
and evolved over time? What is the role of the knowledge base?

Storage in MGraph-DB (Knowledge Base):
Graphs produced by the LLM are not just ephemeral structures held in memory; they are persisted and
managed in what we call the knowledge base. In this architecture, the knowledge base is essentially a
collection of versioned graph data stored using MGraph-DB’s format (JSON). Concretely, when an LLM
finishes  a  task  (say  extracting  entities  and  relationships  from  an  article  or  generating  a  mapping
between two ontologies), the result is saved as a JSON file (or set of files) representing a graph – nodes,
edges, properties, and even the LLM-generated metadata like scores. Because MGraph-DB is file-backed
and schema-aware, each JSON snapshot can be checked into Git or cloud storage. This means:

Every iteration or update to the graph can be diffed and tracked (just like source code).  The
knowledge base therefore becomes a living history of the graph’s evolution. You might have
PersonaGraph_v1.json , PersonaGraph_v2.json , etc., showing how new nodes or edges

were added by subsequent LLM runs or human edits.

The knowledge base is  highly portable.  Since it’s  just structured data (e.g.,  JSON),  we aren’t
locked into a single database engine or instance. A graph file can be loaded into an MGraph-DB
instance on a developer’s laptop, a serverless cloud function, or any environment with Python.
This supports a serverless, on-demand usage pattern: you only load and instantiate the graph
when you need to query or modify it. At other times, it rests as static data (costing nothing when
not in use).
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Management and Evolution:
Managing  these  graphs  over  time  involves  both  automated  processes  and  human-in-the-loop
processes:

Deterministic Pipelines: The architecture is set up as a pipeline of steps (similar to an ETL or CI/
CD pipeline for data). For example:
Extraction Phase: LLM reads raw input (RSS feed, document, etc.) and outputs an initial graph
(saved as JSON).
Enrichment/Mapping Phase: Another LLM call or a script takes those graphs and links them,
adding mapping nodes or edges (output another JSON).
Curation Phase: Optionally, a human reviews the combined graph and edits it (either via a UI or
by editing the JSON directly or through a Git commit).
Utilization Phase: The final graph is loaded to answer questions or to generate a report.

Each phase’s output is stored, and because the pipeline is deterministic given the same inputs, we can
always reproduce a graph version by rerunning the pipeline. This structure makes the graph evolution
repeatable and debuggable. If a certain relationship appears incorrect, we can trace it to the stage
(and even the prompt) that produced it and adjust that stage.

MGraph-DB as the Engine: MGraph-DB plays a foundational role in this management. It serves
as the in-memory graph engine when we need to manipulate or query the graph. It’s optimized
for fast in-memory operations, which means even as the knowledge base grows, we can spin up
an MGraph-DB instance on a subset of the data (or the entire dataset) to run complex queries,
analytics, or transformations efficiently. Once changes are made (e.g.,  merging two nodes or
adding a new edge), we can serialize the graph back to JSON and commit the changes. There is
no separate heavy database process running 24/7 – we use MGraph-DB in a stateless manner.
It’s analogous to how one might use a compiler: run it when needed, then store the artifact.
Here, the artifact is the updated graph dataset.

Versioning and Snapshots: Because everything is file-based, implementing version control (with
Git or another VCS) is straightforward. Every change to the knowledge graph can go through a
GitOps style workflow: propose changes (even via pull requests), review them (diff the JSON,
perhaps with a visual diff tool for graphs),  and merge them. This is a major departure from
traditional graph databases where changes accumulate in a running instance and it’s non-trivial
to capture the exact state or roll back individual changes. Our approach treats knowledge as
code, enabling branching and experimentation. For example, one could branch the knowledge
base to try a different ontology alignment, and if it doesn’t work out, simply not merge those
changes.

Maintenance and Evolution Over Time: Over time, as new data arrives or the world changes,
the graphs need to be updated. The LLM might be run periodically (say, nightly or whenever new
inputs are available) to extend the graphs. The knowledge base accumulates these extensions.
There’s a strategy in place to prevent it from becoming a tangled mess:

Graph Modularization: The knowledge base might consist of many smaller graph files rather
than one gigantic file. For instance, each persona could have its own graph file, each data source
its own graph, and then a set of mapping files link them. This modular approach makes it easier
to evolve parts of the knowledge without risking the integrity of everything at once.
Graph Pruning/Cleaning: Because we have version history, we can identify when certain nodes
or subgraphs become obsolete (e.g., a concept that was introduced but later deemed irrelevant).
Those can be deprecated in a new version, knowing that the history is still there if needed.
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Automated tests (data tests) can help identify anomalies or unused parts of the graph over time,
which maintainers can then clean up.
Scalability: The use of cloud-native techniques – like storing JSON in S3, using AWS Lambda or
similar to run MGraph-DB functions on demand – means the solution can scale horizontally.
Need to process 100 new documents? Spin up 100 short-lived graph-building functions in
parallel, each outputting a graph fragment. Later, combine those fragments. The cost is linear
with usage; there’s no monolithic database engine choking on peak loads or idle during quiet
times. This serverless ethos, enabled by MGraph-DB’s lightweight nature, keeps costs efficient
and performance high. Traditional graph databases often require a permanently running
cluster, whereas here we can allocate resources dynamically.

Role of the Knowledge Base:
The knowledge base is the  single source of truth for all derived knowledge. It’s not just a cache or
temporary memory – it’s a persistent, queryable repository that applications and users can draw upon.
For example, if a question arises (“Has concept X ever been linked to concept Y in our analyses?”), one
can query the knowledge base (via an MGraph-DB query or even an NLP query if a layer is added) to
find the  answer.  The  knowledge base  also  serves  to  feed the  LLM context for  future  operations.
Instead  of  prompting  the  LLM  from  scratch  each  time,  we  can  retrieve  relevant  portions  of  the
knowledge base (graph subtrees) and provide them as context to the LLM for more informed output
(this is similar to Retrieval-Augmented Generation).

Moreover,  the  knowledge base is  designed to  be  human-friendly despite  being machine-readable.
Stakeholders can browse it – either by loading it into graph visualization tools or even by reading the
structured JSON – to understand what knowledge has been captured. This transparency fosters trust in
the system’s outputs because one can always drill down from an answer back to the source graphs and
ultimately to the original data (provenance). In essence, the knowledge base built on MGraph-DB is the
backbone of an explainable AI system: it holds all the intermediate knowledge that explains why the AI
makes certain recommendations or conclusions.

In summary, graphs from the LLM are stored as JSON-based knowledge graphs in a version-controlled
repository,  managed  through  deterministic  pipelines  and  MGraph-DB’s  in-memory  capabilities.  The
knowledge base acts  as  a  growing,  evolving library  of  interconnected data  –  curated by  LLMs and
humans – which can be efficiently updated, queried, and trusted over time. This approach ensures that
as the system learns and accumulates information, it remains scalable, cost-efficient, and auditable,
in stark contrast  to treating the LLM as a one-off black box whose outputs vanish after use.  Here,
nothing is lost – every piece of inferred knowledge is captured and can contribute to future reasoning.

Q5: What is meant by the concept of an "ontology of ontologies"?

The term “ontology of  ontologies”  refers  to  a  meta-level  organization of  knowledge –  essentially  a
framework  that  manages  multiple  ontologies  and  the  relationships  between  them.  In  Dinis  Cruz’s
strategy, this is a core principle to achieve scalability and flexibility in knowledge representation. Instead
of enforcing one giant, “one-size-fits-all” ontology for everything (which is often untenable in practice),
the idea is to allow many individual ontologies to coexist and then create an overarching structure that
links them together. 

In practice, an “ontology of ontologies” means:

Multiple Ontologies for Different Contexts: Each team, domain, or context can maintain its
own ontology (its own set of entity types, relationships, and taxonomies) that makes sense for
them.  For  example,  a  Security  team  might  have  an  ontology  centered  around  “Threats,
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Vulnerabilities,  Assets,  Controls”,  while  a  Business  team  has  one  around  “Departments,
Processes,  Objectives,  KPIs”.  Traditionally,  one  might  attempt  to  merge  these  into  a  single
enterprise ontology – a painful and often rigid process. Instead, we embrace their differences.
Each ontology is  like a  subgraph in our overall  knowledge graph,  largely  self-contained and
authored by those who know that domain best.

Graphs of Graphs (Meta-Graph): The “ontology of ontologies” comes into play as a meta-graph
that connects these sub-ontologies. Dinis sometimes refers to this as G³ (Graphs of Graphs of
Graphs) –  it  sounds  abstract,  but  it  boils  down  to  introducing  nodes  that  represent  entire
ontologies or key concepts from one ontology and linking them to nodes from another ontology.
If we continue the above example, the meta-graph might link “Asset” (from Security ontology) to
“IT System” (from IT department ontology) to “Revenue Application” (from Business ontology) if,
say, those all refer in part to the same actual system or concept in different language. In effect,
the meta-ontology contains mappings or alignments like Asset ≈ IT System, IT System is a type of
Application,  etc.  This  is  an  ontology  about  other  ontologies  –  it  describes  how the  different
vocabularies relate at a high level.

Unified View with Autonomy Preserved: The benefit of an ontology of ontologies is that it
gives a  unified view without forcing uniformity. Each team can continue using the terms and
structure that work for them (ensuring adoption and accuracy), while the organization still gains
a way to translate and interoperate. It’s very analogous to microservices architecture in software:
each service  (ontology)  has  its  own schema and API,  and the  meta-ontology  is  like  the  API
gateway or contract that allows them to communicate. For instance, a query from a high level –
“list all assets with high risk in the company” – can be answered by traversing the meta-graph: it
knows that “assets” in the Security graph connect to “systems” in IT’s graph which connect to
records in the Business graph that carry risk information.  Without an ontology-of-ontologies
layer, you’d have isolated silos or you’d attempt a one-big-ontology which breaks the specialized
needs of teams.

Human-in-the-Loop Mapping: Establishing  and maintaining  the  ontology  of  ontologies  is  a
collaborative  process.  LLMs  can  assist  by  suggesting  mappings  (they  might  observe,  for
example, that the Finance team’s concept of “Client” is essentially the same as the Sales team’s
“Customer” and propose a link). However, finalizing that link might involve human agreement.
The knowledge base (with MGraph-DB) is used to store these cross-ontology links as first-class
data.  Over  time,  this  meta-level  graph evolves  as  new ontologies  are  added or  as  domains
change.  If  a  team  renames  a  concept  or  splits  it  into  two,  the  meta-ontology  is  updated
accordingly. Because everything is version-controlled, such changes are managed with clarity –
you can see when a mapping was introduced or altered.

MGraph-DB’s Role:
MGraph-DB is particularly well-suited for an ontology of ontologies approach. Its file-based, modular
nature means you can literally have one file per ontology and another file capturing the mappings. This
modular storage mirrors the logical separation of domains. Traditional single-store graph databases
struggle here:  they often encourage throwing all  data into one schema, which can get  messy with
overlapping terminologies. In our approach, since MGraph-DB is stateless and JSON-based, combining
data from two ontologies is as simple as loading two JSON graph files into memory together. We don’t
have to force their schemas to merge; we can operate on both and create a third structure (mappings)
that  references  elements  of  each.  Performance-wise,  MGraph-DB  can  handle  these  multi-graph
traversals in memory with type safety, and then we persist the combined insights if needed.
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Benefits of an Ontology of Ontologies:
-  Scalability of Knowledge Management: As an organization grows, new domains emerge. We can
plug in a new ontology (say the company acquires a biotech division, which has its own concepts of
“Gene” and “Drug”). Instead of refactoring a huge ontology, we just add the new one and then map
relevant parts (perhaps “Drug” maps to the existing concept “Product” in the business ontology). This
scales much more gracefully and quickly.

Reduced Bottlenecks and More Ownership: Each team can evolve their ontology at their own
pace, without having to convene enterprise ontology meetings for every change. The ontology-
of-ontologies decouples these efforts. Central governance focuses only on the mappings at the
intersections (which is a more tractable problem). This is analogous to microservices allowing
teams to develop independently with only API contracts to manage between them.

Richness and Diversity of Ontologies: Different ontologies might model the world in different
ways – one might be more fine-grained or use different class hierarchies. Allowing them to co-
exist means you can capture multiple perspectives. The meta-graph then becomes a place of
translation and  integration.  In AI terms, this could even be beneficial because the LLM can
draw from the meta-graph to understand that two terms are equivalent or related, enhancing its
comprehension of context when answering questions that touch multiple domains.

Example – “Ontology of Ontologies” in action: Consider a concrete scenario: The concept of
“Risk” means different things to different departments. Operational Risk team has an ontology
detailing  types  of  operational  failures;  Compliance  has  an  ontology  about  regulatory  risk
categories; Security has one about threat risk levels. An ontology of ontologies might have a
higher-level  concept  “Risk”  that  links  all  these.  When  leadership  asks  for  a  “holistic  risk
dashboard,” the meta-ontology allows pulling data from all three areas and aligning them. Each
area didn’t have to change their definitions; we just built the bridges. 

In summary, an “ontology of ontologies” is about managing knowledge at scale through federation
rather than centralization. It is a strategy to keep graphs  organic, modular, and easily evolvable.
Dinis Cruz’s vision uses this concept to avoid the classic failure of big ontology projects (which often
collapse under their own weight). With the help of MGraph-DB, this vision is implemented as a set of
interconnected JSON-based graphs – each authoritative in its domain – tied together by a curated layer
of mappings. This results in a semantic graph ecosystem that is both  robust and adaptable, where
explainability is preserved (one can always see which sub-graph a piece of knowledge came from) and
yet the collective intelligence of all graphs can be utilized when needed.

Conclusion

Dinis  Cruz’s  approach  to  evolving  semantic  graphs  and  ontologies  with  LLMs  and  MGraph-DB
represents a modern, agile take on knowledge management. It emphasizes flexibility, explainability,
and human collaboration at every step. Concepts are introduced dynamically and identified through
context before being consolidated – a contrast to the rigid upfront schema design of traditional OWL
ontologies.  Confidence  and  relevance  scores  are  woven  into  the  fabric  of  the  graphs,  providing  a
quantitative handle on the inherently uncertain outputs of AI and helping prioritize what the system
(and its users) should pay attention to. Reasoning in this framework is driven by LLMs for intuitive leaps,
backed by deterministic rules and human oversight to ensure reliability – effectively blending artificial
intelligence with expert domain knowledge.

• 

• 

• 
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Crucially,  MGraph-DB serves as the enabling technology that  makes this  all  possible at  scale.  Its
serverless,  memory-first  design  allows  knowledge graphs  to  be  spun up,  used,  and torn  down on
demand, which aligns perfectly with cost-efficient cloud operations.  By persisting data as JSON and
integrating  with  tools  like  Git,  it  brings  software  engineering  rigor  (version  control,  testing,
reproducibility) into the world of semantic graphs. This means the knowledge base is always auditable
and improvements are trackable. Graph versioning and human-in-the-loop workflows ensure that the
knowledge stays accurate, current, and aligned with business needs – the graphs improve over time
instead of decaying. 

The concept of an “ontology of ontologies” encapsulates the strategy of organizing knowledge in a
federated  yet  connected  way.  It  acknowledges  the  reality  of  complex  enterprises:  different  groups
speak in different ontologies,  and that’s  okay.  By mapping these together,  the organization gains a
powerful  “graph  of  graphs”  –  a  holistic  knowledge  network  that  remains  comprehensive  without
being monolithic.

In essence, the principles at play here – use LLMs where they excel, treat knowledge as code, prefer
evolution  over  upfront  perfection,  and  keep  the  human  in  the  loop  –  come  together  to  create  a
semantic  graph  ecosystem  that  is  robust,  scalable,  and  business-friendly.  This  approach  turns
knowledge  graphs  from  static  repositories  into  living,  breathing  assets:  they  grow  with  new
information, adapt to new domains, and continually support decision-making through clear provenance
and intelligent  reasoning.  For  a  LinkedIn-savvy  audience of  professionals,  the  message is  clear:  by
combining  cutting-edge  AI  with  sound  engineering  (in  the  form  of  MGraph-DB  and  thoughtful
ontological  design),  we  can  unlock  the  full  potential  of  organizational  knowledge,  making  it  more
accessible, actionable, and aligned with how people actually think and work. 
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