
The Joy of Programming in the Age of AI-
Assisted Development
by Dinis Cruz and ChatGPT Deep Research, 2025/07/03

Abstract

Abstract: This white paper explores how recent advances in generative AI are unlocking the joy of
programming for a new wave of developers, often dubbed “vibe coding” practitioners. These individuals –
many of them non-traditional programmers – are now able to create software through natural language
and AI assistants, experiencing the same creative thrill and flow state that has long motivated career
software engineers. We argue that AI-powered no-code development platforms dramatically lower the
barrier to entry, enabling “citizen developers” in every business function to rapidly turn ideas into
working applications. This democratization of programming is introducing millions of new people to the
exhilaration of building and iterating software in real time. We examine key factors behind this
phenomenon: the importance of immediate feedback loops (as emphasized by Bret Victor’s Inventing on
Principle), the intrinsic motivation developers feel when “in the zone” , and how AI tools
now deliver that instant interactivity to non-coders. While some fear that AI will obviate the need for
human programmers, we highlight an opposite trend – a surge in programming participation and a
greater need for professional developers to provide robust architectures, governance, and
maintainability . In this thought-leadership piece, we present a vision of the near future where
programming skills become widespread, every team includes AI-assisted developers, and the creative
joy of coding becomes a universal experience rather than a specialist’s privilege.

Introduction

In the software engineering community, the term “flow state” or being “in the zone” describes a peak
experience of focus and creativity that makes programming deeply rewarding . A coder in this
state loses track of time as they solve problems and see their ideas come to life, often working late into
the night fueled by intrinsic motivation. This joy of programming – the magnetic allure of immersing
oneself in code – is one of the core reasons many developers enter the profession . For decades,
however, this experience was largely limited to those who could overcome the high barriers of
traditional software development: learning syntax, mastering complex toolchains, and navigating
lengthy compile-test-debug cycles. Programming was a skill reserved for the relatively few, leaving most
people as passive users of software.

Today, we stand at the threshold of a dramatic shift. Advances in generative AI and conversational
coding assistants are radically democratizing software creation . Natural language has effectively
become the new programming language – a high-level abstraction through which humans tell
computers what to do. In this new paradigm (often informally called “vibe coding” or more professionally
No Code Development, NCD), a person can describe an application or feature in plain English and
have an AI system generate the working code. Instead of painstakingly writing every line of code, the
human can focus on ideas and intent, guiding the AI with prompts and examples. The machine handles
the low-level details, while the human stays in the creative loop . The end result is an AI-assisted

1 2 3 4

5 6

3 4

3

7

7

8

9

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=,%E2%80%9D
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=Through%20some%20very%20impressive%20custom,Since%20IoP%20I%E2%80%99ve%20constantly
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20is%20appealing%20in%20a,they%20keep%20on%20doing%20it
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h#:~:text=spot%20on%20analysis%20on%20Vibe,User%20Coding%27%20or%20%27UI%2FUX%20Coding
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=to%20facilitate%20effective%20AI%20collaboration
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20is%20appealing%20in%20a,they%20keep%20on%20doing%20it
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20is%20appealing%20in%20a,they%20keep%20on%20doing%20it
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=,radical%20democratization%20of%20software%20creation
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=,radical%20democratization%20of%20software%20creation
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=While%20the%20concept%20has%20proven,Vibe
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=creation,handles%20the%20tedious%20coding%20details

development process that feels fundamentally different – and immensely empowering – compared to
traditional programming.

Crucially, this new mode of software development is introducing a vast new audience to the joy of
programming. Business analysts, designers, project managers, and other professionals who once felt
“locked out” of the software creation process can now actively participate in building tools and
automations for their own needs. By removing the requirement to write code manually, generative AI is
turning many “non-developers” into developers in practice . These newcomers are beginning to
experience the same creative highs and “aha” moments that career programmers cherish. They can
brainstorm an idea, implement it through an AI assistant, instantly see it running, and iteratively refine
it – all in a single day or even a few hours. This is a stark contrast to the old enterprise IT workflow
where a businessperson’s feature request might sit in an IT backlog for weeks. As we will discuss, the
immediacy of this feedback loop is a game-changer: it creates a tight connection between intent and
outcome that fuels engagement and innovation .

In this paper, we explore the key ideas behind this phenomenon and its implications. We begin by
examining the psychological payoff of programming – the state of flow and creative pleasure long
noted in software development literature. We then show how AI-driven “vibe coding” tools recreate
those conditions of rapid feedback and exploration for a broader population. Next, we discuss the
emergence of GenAI developers (AI-assisted developers) and citizen development, highlighting
industry trends that predict an explosion in the number of people creating software. Finally, we
consider the broader impacts: why this movement will increase rather than decrease the need for
traditional software engineering skills, and how organizations can harness this influx of new
programmers while maintaining software quality and governance. Throughout, we maintain a forward-
looking perspective, arguing that embracing this democratization of coding will unlock unprecedented
creativity and productivity in the software field. The joy of programming, once the domain of the few, is
poised to become a mainstream cultural experience – a development we should welcome and nurture.

The Joy of Programming: Flow State and Creative Delight

Software developers have often likened coding to a form of art or craftsmanship, noting the deep
satisfaction and focus it can provide . Thomas De Moor aptly describes programming’s “magnetic
quality” – it pulls you in, scratching an itch in the mind that makes you want to keep solving problems

. When coding, hours can pass in what feels like minutes; a programmer may become so absorbed
in the task that they lose awareness of time and external concerns . Psychologists call this
optimal experience the flow state, and it is characterized by intense concentration, a sense of control
and clarity, a distortion of temporal perception, and an intrinsic reward in the activity itself . In
his seminal work, Mihály Csíkszentmihályi identified programming as one of many activities (like
painting or sports) that can induce flow, because it provides clear goals, immediate feedback, and a
balance of challenge and skill. In practice, developers often refer to this as “being in the zone” – a state
where “time passes in the blink of an eye, brilliant solutions appear, [and] it all just flows out
automatically” .

Crucially, the flow state is not just pleasurable – it also correlates with heightened productivity and
creativity. A developer in flow can produce elegant solutions and leaps of insight that might not occur in
a more distracted frame of mind . This is one reason why developers cherish uninterrupted time
(hence the classic image of coders wearing headphones to avoid interruptions). The flow experience is
autotelic, meaning it is rewarding for its own sake; many programmers point to these moments of
creative immersion as the reason they love their job, even beyond external rewards . As one
article notes, “Programming feels this way because you can immerse yourself so deeply into it that you forget

10

1 2

11 4

3

12 13

14 15

13

13

14 16

2

https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=Despite%20these%20limitations%2C%20it%E2%80%99s%20essential,swiftly%20is%20a%20significant%20advancement
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=,%E2%80%9D
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=Through%20some%20very%20impressive%20custom,Since%20IoP%20I%E2%80%99ve%20constantly
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=I%E2%80%99m%20not%20the%20only%20one,are%20among%20the%20most%20alike
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20is%20appealing%20in%20a,they%20keep%20on%20doing%20it
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20feels%20this%20way%20because,a%20flow%20state%20of%20mind
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20feels%20this%20way%20because,a%20flow%20state%20of%20mind
https://x-team.com/magazine/flow-state-of-mind#:~:text=Flow%20is%20the%20mental%20state,a%20flow%20state%20of%20mind
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20feels%20this%20way%20because,a%20flow%20state%20of%20mind
https://x-team.com/magazine/flow-state-of-mind#:~:text=like%20minutes,motivator%20they%20are%20thinking%20about

about yourself…This is a highly rewarding experience. You’re in the zone” . In short, the joy of
programming is real and well-documented – it’s the thrill of solving a puzzle, the pride of creation, and
the almost meditative focus that coding can induce.

However, reaching this joyous zone has traditionally required a significant level of programming skill and
a conducive environment. A novice programmer often struggles with syntax errors, confusing
toolchains, and long pauses to troubleshoot issues, all of which break flow. Likewise, in corporate
settings, a developer’s flow can be broken by meetings, context-switching, or waiting on slow build
processes. Bret Victor, in his influential talk “Inventing on Principle,” argued that one key to unlocking
creative flow is immediate feedback: “Creators need an immediate connection to what they create…if you
make a change, you need to see the effect of that immediately.” . Traditional coding often imposes a
delay (compile times, deployment steps, etc.) between making a change and seeing the result, whereas
an ideal creative environment would tighten that loop to seconds or less. Victor’s live demos showed
that when feedback is instantaneous, it “enables exploration, which then gives birth to ideas which would
otherwise never see the light of day.” In other words, quick feedback doesn’t just save time – it actually
fosters creativity, allowing the creator to play with ideas fluidly and stay in that blissful zone of discovery.
This insight is pivotal in understanding why AI-assisted development is so exciting: it dramatically
accelerates the feedback loop for many kinds of programming tasks, potentially making the flow state
more accessible to more people.

From Backlogs to Real-Time Creation: Empowering a New Class
of Developers

For much of the software industry’s history, there has been a strict separation between “the
builders” (software engineers) and “the idea people” or end users (often business professionals). A
business domain expert who had a concept for a new tool or process improvement usually had to hand
off their idea to a technical team. The typical enterprise workflow involved writing formal requirements,
tickets in a backlog, sprint planning, and weeks or months before a working prototype emerged. This
process was not only slow; it was creatively stifling for the idea originator. By the time a developer
implemented the feature, the business user’s context or needs might have changed, or the result might
miss the mark – requiring yet another cycle of clarification and waiting. The lengthy turnaround
eliminated any sense of “flow” for the non-technical participant; they were essentially observers, not
creators. As Dinis Cruz has noted, the old model forced business users to be extremely explicit upfront
and then wait on others to deliver, leading to frustrating delays and missed opportunities for rapid
experimentation. It was, in many ways, the antithesis of the quick feedback and iteration that drive
creative joy.

Now, consider how generative AI and no-code development tools are turning this situation on its head.
In the emerging paradigm, a business user can become the builder, at least for many types of
applications. Using natural language prompts and intuitive interfaces, non-engineers can directly create
software to solve their immediate problems . Instead of filing a ticket for IT, a marketing manager
might use an AI app builder to create a custom dashboard or workflow automation by themselves, in a
matter of hours. They can test it immediately, see what works or doesn’t, and refine the idea on the fly.
The feedback loop that used to span weeks is now compressed into perhaps minutes. This real-time
creation capability unlocks the same iterative, exploratory process that professional developers enjoy in
a good coding session – but for people with no formal coding background. The result is that the “idea
people” are no longer on the outside looking in; they are in the driver’s seat, experiencing the thrill of
making something functional with their own hands (so to speak) and seeing instant results.

3

1

2

10

3

https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20is%20appealing%20in%20a,they%20keep%20on%20doing%20it
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=,%E2%80%9D
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=Through%20some%20very%20impressive%20custom,Since%20IoP%20I%E2%80%99ve%20constantly
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=Despite%20these%20limitations%2C%20it%E2%80%99s%20essential,swiftly%20is%20a%20significant%20advancement

This shift is palpable in the stories coming from organizations that have embraced citizen development.
Business staff often report a new sense of agency and excitement when they can automate a task or
prototype an app on their own. They enter a playful mode of trying out ideas (“What if the form could do
X? Let me just ask the AI to add that…”), akin to a programmer tweaking code to achieve a desired
outcome. Frustrations naturally still occur – e.g. when the AI’s output isn’t quite right – but even those
frustrations are part of a motivating cycle of trial and improvement, much like a traditional dev chasing a
bug fix. The crucial point is that immediate feedback is now available to everyone. The business creator
doesn’t have to wait for a developer to come back next week with changes; the AI will attempt them
right away. This creates a feeling of “flow” for the creator: they can maintain momentum and focus,
continually refining their idea without long interruptions. In essence, we are witnessing the extension of
Bret Victor’s principle (immediate connection to what you create) beyond professional coders to a much
broader population. When the latency between ideation and realization approaches zero, creativity
explodes – people feel free to experiment, since they can quickly see the outcome and adjust course. It
engenders a joyful, game-like interaction with technology: “let’s see what happens if I try this… oh
interesting, now how about we add that…”

Figure: The creative empowerment of non-traditional developers. With AI assistants handling the technical
details, individuals from all backgrounds can focus on high-level ideas – experiencing the same immersive
“flow” and satisfaction that career programmers do. They are, metaphorically, given a blank canvas on which
to realize their ideas, with instant feedback guiding their creative process.

The term “vibe coding,” although slang, captures a slice of this experience – the notion of “just vibing”
with an AI to build something, without strict formality. However, as Dinis Cruz and others have pointed
out, the label “vibe” can be misleading . What these new developers are doing is not magic or merely
goofing around; it is a real engineering workflow, just highly abstracted. In this paper we’ll use the term
AI-assisted no-code development to emphasize that genuine development is occurring (with
architecture, logic, and UIs being created), even if no one is manually typing source code. And
importantly, the joy these creators feel is the same joy of programming that has always existed – the
euphoria of making a machine do something new, of solving a problem through one’s own creativity.
The difference is that now that feeling is accessible to those who don’t know C# or Python, expanding
the ranks of people who can partake in it. This democratization of creation is analogous to how word
processors allowed anyone to publish documents (not just professional typesetters), or how digital
video tools let anyone try their hand at filmmaking. By lowering technical barriers, we let more people

8

4

https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=While%20the%20concept%20has%20proven,Vibe

focus on the creative act itself, which is inherently gratifying. AI is enabling a wider swath of humanity to
“think in code” without writing code – and as a result, many are discovering that they love it.

Generative AI Developers: Millions of New Programmers

The rise of AI-assisted development is not only a feel-good story about creativity; it is also a major
workforce and industry trend. We are on the cusp of a boom in the population of people who identify as
software creators. Research firm Gartner projects that by 2025, “citizen developers” (employees building
applications with low-code or no-code tools) will outnumber professional developers 4 to 1 in large
enterprises . This is a staggering ratio that underscores how widely the ability to create software is
spreading beyond traditional IT. Microsoft has similarly noted the potential for hundreds of millions of
new apps to be built by non-traditional developers in the coming years (one oft-cited figure is 450
million new low/no-code applications in the next five years) as the demand for software far outstrips
the supply of professional coders . While earlier waves of this citizen developer movement were
driven by visual programming tools and platforms like Excel or Salesforce, generative AI is
supercharging the trend. Now anyone who can describe what they want in natural language can
potentially develop a working piece of software. The programming knowledge once required –
understanding specific APIs, syntax, and frameworks – is increasingly being handled by the AI
translator. In Andrej Karpathy’s words, “Software 3.0 is programmed with prompts…the new ‘computer’ is an
LLM, and the new ‘programming language’ is English…This marks a radical democratization of software
creation.”

This democratization means we will witness an influx of millions of new “programmers” — though they
may not call themselves that — across all sectors of society. Every department in a company (marketing,
HR, finance, etc.) can have its own DIY software builders who create custom solutions (forms, analytics,
workflows, mini-apps) to optimize their work. Small business owners and solo entrepreneurs are using
AI copilots to build their websites and online stores without hiring developers. Educators are using no-
code AI tools to create learning apps tailored to their students. Even kids and teenagers with no coding
training are starting to play with generative AI to create simple games or bots, essentially learning
programming concepts without realizing it. In short, software creation is becoming a universal
competency, much like document editing or slide presentation became ubiquitous with earlier
generations of office software.

It’s important to clarify that quantity does not equate to proficiency. Not every citizen developer will be
crafting complex, robust systems – in fact, many of their creations will be simplistic or have rough
edges. But the significance lies in the shift of mindset: people are beginning to see problems around
them as software-solvable, and they have tools at their disposal to attempt solutions on their own. The
latent demand for software is enormous (there are far more ideas for useful apps than there are
developers to code them), and AI-driven development is a release valve for that pent-up demand

. Workers no longer have to suffer with a manual process just because IT is busy; they can try to
automate it themselves. This “self-service” approach to software means a lot more experimentation and
innovation at the edges of organizations. Some experiments will fail, but some will succeed brilliantly,
and even the failures provide learning and new iterations at a pace that old IT delivery models could not
match.

Interestingly, early evidence suggests that this blossoming of new developers will actually increase the
demand for experienced software engineers, not reduce it. Why? First, the more software is created
everywhere, the more integration and maintenance work is generated – tasks often best handled by
professionals. Second, when a prototype built by a citizen dev becomes popular or mission-critical, it
usually needs hardening (security, scalability, refactoring), which calls for professional expertise. Third,

17

18

19

20

21

5

https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=existing%20tools%20as%20well%20as,shipping%20new%20software%20from%20scratch
https://medium.com/bricksnbrackets/coding-has-become-a-pop-culture-939100f84b0c#:~:text=,down%20%E2%80%A6
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=perform%20a%20task%2C%20like%20image,radical%20democratization%20of%20software%20creation
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=After%20all%2C%20the%20world%20has,demand
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=1,always%20growing

organizations will need experts to curate and govern the AI development tools, provide reusable
components (APIs, templates), and set best practices to avoid chaos. Simon Wardley humorously noted
that due to the “explosion of demand caused by vibe coding, most organizations will end up needing
more software engineers” . Dinis Cruz echoes that the solid architecture and tech stacks underneath
these AI-generated apps will “need more, not less Devs” to build and maintain . In essence,
professional developers are needed to build the platforms and guardrails that enable safe and
effective no-code development at scale. When every employee becomes a “developer,” the role of the
traditional developer shifts upward – focusing on frameworks, infrastructure, and high-level design that
ensure all these citizen-built apps don’t reinvent the wheel or create undue risk. It’s a bit like how the
spread of writing increased the need for teachers and librarians: more creators generate more work to
support those creators.

The relationship between AI-assisted newcomers and seasoned developers is also collaborative. Far
from being adversaries, they complement each other’s strengths. The new GenAI-powered dev tools
can handle routine coding and provide scaffolding, which even professional developers benefit from (it
automates boilerplate and frees time for more complex logic). On the flip side, experienced developers
become mentors and editors in this ecosystem – reviewing AI-generated code, tweaking prompts to
get better outputs, and embedding their domain expertise into the AI’s knowledge base. There is an
irony in the current scenario: the people who can get the most out of AI coding tools are often those
who know coding best. An experienced programmer can prompt ChatGPT or a code generator in a very
precise way, foresee pitfalls, and iteratively guide it to a solution much faster than a novice could .
Instead of making their skills redundant, the AI becomes a force multiplier for their productivity.
Meanwhile, those with less coding skill can achieve results previously out of reach by leaning on the AI
and perhaps consulting an expert for tough parts. The net effect is an overall increase in software output
and a broadening of participation, with skilled engineers still very much in demand.

Quality, Craft, and the Evolving Role of Professionals

With so many new hands joining the proverbial keyboard (or rather, the prompt dialog), a natural
question arises: what about software quality, security, and all the non-functional requirements that
professional developers obsess over? Indeed, one of the key challenges in this new era is ensuring that
the exuberance of rapid no-code development doesn’t lead to a tangled mess of fragile applications or
security nightmares. Early experiences with AI-generated code show a double-edged sword: the AI can
produce functional code quickly, but it may also introduce hidden bugs, architectural anti-patterns, or
“technical debt” if used naively . A citizen developer, for instance, might build a workflow that
works for 10 users in a test, but fails at 1,000 users or exposes sensitive data inadvertently. The
responsibility of catching and correcting such issues often falls to the professional developers or IT
departments downstream. In other words, the craft of software engineering – writing efficient
algorithms, securing data, ensuring maintainability, etc. – remains as vital as ever, and arguably
becomes even more important when software is being produced by people unfamiliar with these
concepts.

Organizations that successfully embrace AI-assisted development tend to do so with a “fusion team”
approach: blending business domain experts with professional developers in cross-functional teams

. The idea is to combine the creativity and domain knowledge of citizen devs with the technical rigor
of seasoned devs. The AI tools serve as the bridge between them. For example, a business expert can
draft a workflow using a no-code tool, and an IT expert can then review the generated artifacts, adding
error handling, security checks, and performance tweaks as needed. Over time, some of these quality
guardrails can be automated – e.g. the AI itself can be trained to enforce certain secure coding practices
– but human oversight is still critical. A Medium article by Thoughtworks on generative AI in coding
noted that while AI can speed up development, “AI-generated code can compound technical debt if not

22

5

23

24 6

25

20

6

https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h#:~:text=you%20tell%20it%20to%20follow,at
https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h#:~:text=spot%20on%20analysis%20on%20Vibe,User%20Coding%27%20or%20%27UI%2FUX%20Coding
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=flow,code%20platforms
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=while%20AI%20can%20generate%20code,to%20facilitate%20effective%20AI%20collaboration
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=to%20facilitate%20effective%20AI%20collaboration
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=Citizen%20developers%20build%20internal%20applications,shipping%20new%20software%20from%20scratch
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=After%20all%2C%20the%20world%20has,demand

properly managed,” underscoring the necessity of human review and good software engineering
practices to maintain quality . In a sense, we are moving toward a model where AI handles the first
draft of code, and humans act as editors and architects. The first draft comes quickly – capturing the
intent – and then experts refine it to meet production-grade standards.

Professional developers, therefore, are not becoming obsolete; their role is evolving. They are the ones
who will build the robust building blocks (libraries, APIs, services) that citizen developers snap together.
They will also focus more on defining policies and standards (for security, data governance, UI/UX
consistency, etc.) that the AI tools can be configured to follow. In many organizations, developers are
already creating internal “prompt libraries” or templates for common tasks, which less technical staff
can invoke without starting from scratch each time. Moreover, the traditional developers are themselves
benefiting from higher-level abstractions – they too can code at a higher level with AI, which means they
can attack more ambitious problems. Imagine one expert developer overseeing 10 citizen developers
each building departmental apps: the expert might set up the core data models and APIs for all apps,
while the citizen devs focus on their specific features. The result is faster delivery and a system that still
adheres to a sound architecture defined by the expert. This kind of hybrid teamwork will likely become
a norm. It resembles an apprentice model, except the “apprentices” are partly AI tools and partly human
non-experts, all guided by master developers.

Another aspect to consider is the continuous improvement of the AI tools themselves. As generative
models become more advanced, they will better handle non-functional requirements on their own (for
instance, automatically suggesting performance optimizations or flagging potential security issues). Yet,
even those capabilities often originate from human knowledge encoded into the models. The collective
wisdom of the developer community – the decades of lessons about how to write good software –
needs to be fed into these AI systems. That happens via training data, fine-tuning on high-quality code,
or explicit rules integrated into AI coding assistants. Seasoned engineers play a key part in this feedback
loop: by using AI tools and correcting their mistakes, they teach the AI what is acceptable or not. In the
big picture, we can envision a future where much routine coding is handled by AI, but the overall
system design and the creative problem-solving (as well as the accountability for the end product)
remains with humans. Software engineering might shift to be less about typing syntax and more about
choosing the right abstractions, validating solutions, and steering AI – all higher-level tasks that
require experience and holistic thinking.

Finally, it’s worth highlighting that the joy of programming we celebrated earlier is not diminished by
these changes – if anything, it’s amplified and spread to more participants. Professional developers may
find that offloading grunt work to AI lets them spend more time in the enjoyable parts of development:
designing, innovating, polishing, and learning new things. Meanwhile, the newcomers are discovering
joy in what before might have been an intimidating or frustrating activity. The key is keeping that joy
sustainable by avoiding disillusionment. That means ensuring these citizen devs have pathways to learn
and improve (so they don’t hit walls where they can’t progress) and that their successful prototypes are
nurtured rather than left to collapse under scaling issues. By investing in training, community, and
support around AI development tools, organizations can cultivate a thriving maker culture. When
someone without a coding background creates their first useful app and sees colleagues actually using
it, the sense of accomplishment is huge – akin to a developer shipping their first product. By facilitating
many such experiences, we not only make individuals happier and more empowered, but we also drive
the organization forward through bottom-up innovation.

6

7

https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=to%20facilitate%20effective%20AI%20collaboration

Conclusion

We are entering an era in which the act of programming – turning ideas into executable software – is no
longer the exclusive domain of software engineers. Generative AI has given rise to a new cohort of AI-
assisted developers, from hobbyists to business users, who can build applications through natural
language conversations and intuitive interfaces. This transformation is bringing the joy of programming
to the masses. Millions of people will taste that special satisfaction of seeing “Hello World” (or its
equivalent) appear from something they created, then rapidly evolve that creation to be ever more
useful. They will know the flow of staying up late to tweak a project not because they have to, but
because they want to – driven by curiosity and passion. They will also inevitably feel the frustrations of
debugging and the stubbornness of computers – but even those struggles can be rewarding when
overcome. In short, coding is becoming a more human-centric, creative endeavor for all, rather than a
technical skill for the few.

This white paper has outlined how and why this is happening: AI short-circuits the feedback loop and
removes the requirement of formal coding knowledge, thus enabling immediate creative expression in
software. We saw that immediate feedback is a catalyst for flow and innovation – a principle
now being applied on a broad scale. We also discussed the ramifications for the software industry and
organizations: a surge of new developers, the need for guiding frameworks, and the evolving role of
professional engineers. Rather than fearing a loss of control or quality, forward-thinking teams
recognize this wave of citizen development as an opportunity. They are putting in place the tools,
training, and governance to support it. Those who succeed will effectively multiply their development
capacity manyfold, as every knowledgeable worker becomes also a software creator to some degree. As
Gartner’s analysis suggests, the majority of software in the near future could be written by folks outside
of traditional IT – a profound shift that can drive unprecedented agility and innovation if harnessed
well.

In embracing this change, it’s important to keep sight of the human aspect at its core: joy and
empowerment. The technologies involved – large language models, low-code platforms, etc. – are
means to an end. The end is empowering people to solve their own problems and explore their ideas
with less friction. It is fitting to recall that the early personal computing revolution was driven by a
similar ethos: the PC spread computing power to the masses, enabling a generation of creators. Today’s
AI tools are doing the same for software development itself. When a young entrepreneur or a
schoolteacher or a scientist can develop an app just by conversing with an AI, we have essentially given
them a superpower that was previously limited to those with years of coding education. What great
things might come from unleashing this creative potential broadly? We can expect an outpouring of
niche solutions, personalized tools, and community-driven software that would never have existed
under the old model.

To be clear, the road ahead will have challenges. We will need to educate this new population of
developers about principles of good software (much as we teach digital literacy). We will need robust AI
ethics and safety to ensure the tools guide users toward sound outcomes. We will likely redefine job
roles and team structures to integrate AI-developed components. But the momentum is undeniable:
programming is becoming more conversational, more visual, and more accessible. The cultural
narrative is already shifting from “learn to code or you won’t understand the future” to “you don’t need to
write code to create software”. This is a paradigm shift that can widen the tent of technology creators
dramatically. And as that tent widens, the collective joy and creativity in our industry grows with it. The
essence of programming – logical thinking, problem solving, creativity – remains, but the entry path is
welcoming to many more.

1 2

17

8

https://www.reillywood.com/blog/inventing-on-principle/#:~:text=,%E2%80%9D
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=Through%20some%20very%20impressive%20custom,Since%20IoP%20I%E2%80%99ve%20constantly
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=existing%20tools%20as%20well%20as,shipping%20new%20software%20from%20scratch

In conclusion, the joy of programming is evolving into a joy of creating with AI as an ever-present partner.
It is a joy shared by veteran programmers and newcomers alike, each in their own way collaborating
with intelligent tools to build something meaningful. We are optimistic about this future. Imagine a
world where a marketing specialist, a nurse, or an artist can all harness the power of software to bring
their ideas to life without needing a computer science degree – that world is emerging now. The role of
leaders and innovators is to guide it responsibly, ensuring that this revolution yields durable benefits. If
we do so, we will see technology truly become a universal language of innovation. As one tech visionary
quipped, the new programming language is English – but beyond the humor of that statement lies
an inspiring reality: anyone can now speak the language of creation with computers. And the feeling of
“it works!” – that little spark of joy when your program runs as intended – is something everyone
deserves to experience. By embracing AI-assisted development, we make that possible, lighting the
path for a new generation of creators to join the party and revel in the joy that comes from coding
something awesome.

References:

De Moor, T. (2020). How to Fall Into a Flow State of Mind. X-Team. – Describes why programming
has a magnetic quality and how being “in the zone” (flow state) makes developers feel happy and
deeply focused .

Impact Lab (2013). Why software developers are like artists. – Draws parallels between coding and
art, noting that both involve getting “in the zone” where time flies and creativity flows .

Victor, B. (2012). Inventing on Principle (Talk). – Introduces the principle that creators need an
immediate connection to what they create, showing that instant feedback enables new ideas and
maintains creative flow .

Cruz, D. (2025). No Code Development (NCD): A Paradigm Shift Beyond 'Vibe Coding'. – White paper
by Dinis Cruz and ChatGPT Deep Research arguing for the term NCD. It discusses how in AI-
assisted development the human stays in creative flow while the AI handles code generation ,
and notes that experienced engineers are not obsolete but often excel at this new paradigm .

LinkedIn Post by Dinis Cruz (2025). “Vibe coding: a bad name for a good idea”. – Commentary
suggesting that “vibe coding” (AI-based coding) adds value by letting users create custom UIs on
solid tech stacks, which will require more developers, not fewer . Emphasizes that the term
“vibe” is misleading and it’s really about user-driven coding with AI.

LinkedIn Comment by Simon Wardley (2025) – Notes five points about vibe coding, including that
prompts are not deterministic commands, LLMs always hallucinate to some degree, and critically
that due to the explosion of demand from vibe coding, most organizations will need more software
engineers (not fewer) .

Thoughtworks (May 2025). Can vibe coding produce production-grade software? – A Medium article
analyzing AI-assisted development. It found that AI can generate working code quickly but
struggles with complex changes, requiring human intervention. It highlights that less-technical
team members can effectively prototype ideas with these tools, lowering the barrier to entry ,
but cautions about technical debt and the need for human oversight to ensure maintainable
code .

7

1.

3 14

2.
4

3.

1 2

4.

9

23

5.

5

6.

22

7.

10

6

9

https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=,radical%20democratization%20of%20software%20creation
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20is%20appealing%20in%20a,they%20keep%20on%20doing%20it
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20feels%20this%20way%20because,a%20flow%20state%20of%20mind
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=,%E2%80%9D
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=Through%20some%20very%20impressive%20custom,Since%20IoP%20I%E2%80%99ve%20constantly
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=creation,handles%20the%20tedious%20coding%20details
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=flow,code%20platforms
https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h#:~:text=spot%20on%20analysis%20on%20Vibe,User%20Coding%27%20or%20%27UI%2FUX%20Coding
https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h#:~:text=you%20tell%20it%20to%20follow,at
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=Despite%20these%20limitations%2C%20it%E2%80%99s%20essential,swiftly%20is%20a%20significant%20advancement
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=to%20facilitate%20effective%20AI%20collaboration

Gartner via Kissflow (2025). Rise of the Citizen Developer – Reports Gartner’s forecast that by 2025,
citizen developers in large enterprises will outnumber professional developers 4:1 . Explains
why citizen development is taking off (overloaded IT, need for agility) and how no-code tools let
non-technical users build solutions rapidly.

Karpathy, A. (2025). Software 3.0 and Vibe Coders (as covered by S. Ranjula, Verdentra) – Describes
Andrej Karpathy’s vision that “the new programming language is English” and that software is now
built with prompts to LLMs . Indicates a huge amount of software will be written by a “new
generation of ‘vibe coders’” who are not traditional engineers , marking a democratization of
coding.

Medium (2017). Coding Has Become Pop Culture (Attila Vágó) – Critiques the oversimplification of
coding for the masses but notes the push to create “millions of new programmers by 202x”
through educational tools . (Included for context on the long-running narrative of making
coding accessible, which AI is now accelerating).

Immediate Feedback in Programming
https://www.reillywood.com/blog/inventing-on-principle/

How to Fall Into a Flow State of Mind | X-Team
https://x-team.com/magazine/flow-state-of-mind

Why software developers are like artists – Impact Lab
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/

spot on analysis on Vibe coding | Dinis Cruz
https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h

Can vibe coding produce production-grade software? | by Thoughtworks | May, 2025 |
Medium
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-
production-grade-software-75130f25b63d

From Code To Vibes: Andrej Karpathy On The New Era Of Software | Verdentra
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/

No Code Development (NCD): A Paradigm Shift Beyond 'Vibe Coding' - Dinis Cruz - Research
Hub
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html

What Gartner Says About the Rise of the Citizen Developer | Kissflow
https://kissflow.com/citizen-development/gartner-on-citizen-development/

Coding Has Become Pop Culture. But programming has not. And let me… | by Attila Vágó | Bricks n’
Brackets | Medium
https://medium.com/bricksnbrackets/coding-has-become-a-pop-culture-939100f84b0c

8.
17

9.

7

26

10.

18

1 2

3 12 14 15 16

4 11 13

5 22

6 10 24

7 19 26

8 9 23

17 20 21 25

18

10

https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=existing%20tools%20as%20well%20as,shipping%20new%20software%20from%20scratch
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=,radical%20democratization%20of%20software%20creation
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=The%20landscape%20is%20changing%20at,your%20users%20aren%E2%80%99t%20just%20people
https://medium.com/bricksnbrackets/coding-has-become-a-pop-culture-939100f84b0c#:~:text=,down%20%E2%80%A6
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=,%E2%80%9D
https://www.reillywood.com/blog/inventing-on-principle/#:~:text=Through%20some%20very%20impressive%20custom,Since%20IoP%20I%E2%80%99ve%20constantly
https://www.reillywood.com/blog/inventing-on-principle/
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20is%20appealing%20in%20a,they%20keep%20on%20doing%20it
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20feels%20this%20way%20because,a%20flow%20state%20of%20mind
https://x-team.com/magazine/flow-state-of-mind#:~:text=Programming%20feels%20this%20way%20because,a%20flow%20state%20of%20mind
https://x-team.com/magazine/flow-state-of-mind#:~:text=Flow%20is%20the%20mental%20state,a%20flow%20state%20of%20mind
https://x-team.com/magazine/flow-state-of-mind#:~:text=like%20minutes,motivator%20they%20are%20thinking%20about
https://x-team.com/magazine/flow-state-of-mind
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=I%E2%80%99m%20not%20the%20only%20one,are%20among%20the%20most%20alike
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/#:~:text=There%E2%80%99s%20a%20reason%20you%E2%80%99ll%20see,or%20coding%20a%20software%20system
https://www.impactlab.com/2013/10/24/why-software-developers-are-like-artists/
https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h#:~:text=spot%20on%20analysis%20on%20Vibe,User%20Coding%27%20or%20%27UI%2FUX%20Coding
https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h#:~:text=you%20tell%20it%20to%20follow,at
https://www.linkedin.com/posts/diniscruz_spot-on-analysis-on-vibe-coding-the-area-activity-7329090329624653825-kT5h
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=to%20facilitate%20effective%20AI%20collaboration
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=Despite%20these%20limitations%2C%20it%E2%80%99s%20essential,swiftly%20is%20a%20significant%20advancement
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d#:~:text=while%20AI%20can%20generate%20code,to%20facilitate%20effective%20AI%20collaboration
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d
https://thoughtworks.medium.com/https-www-thoughtworks-com-insights-blog-generative-ai-can-vibe-coding-produce-production-grade-software-75130f25b63d
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=,radical%20democratization%20of%20software%20creation
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=perform%20a%20task%2C%20like%20image,radical%20democratization%20of%20software%20creation
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/#:~:text=The%20landscape%20is%20changing%20at,your%20users%20aren%E2%80%99t%20just%20people
https://www.verdentra.com/article/from-code-to-vibes-andrej-karpathy-on-the-new-era-of-software/
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=While%20the%20concept%20has%20proven,Vibe
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=creation,handles%20the%20tedious%20coding%20details
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html#:~:text=flow,code%20platforms
https://docs.diniscruz.ai/2025/06/18/no-code-development--ndc--a-paradigm-shift-beyond-vibe-coding.html
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=existing%20tools%20as%20well%20as,shipping%20new%20software%20from%20scratch
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=After%20all%2C%20the%20world%20has,demand
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=1,always%20growing
https://kissflow.com/citizen-development/gartner-on-citizen-development/#:~:text=Citizen%20developers%20build%20internal%20applications,shipping%20new%20software%20from%20scratch
https://kissflow.com/citizen-development/gartner-on-citizen-development/
https://medium.com/bricksnbrackets/coding-has-become-a-pop-culture-939100f84b0c#:~:text=,down%20%E2%80%A6
https://medium.com/bricksnbrackets/coding-has-become-a-pop-culture-939100f84b0c

	The Joy of Programming in the Age of AI-Assisted Development
	Abstract
	Introduction
	The Joy of Programming: Flow State and Creative Delight
	From Backlogs to Real-Time Creation: Empowering a New Class of Developers
	Generative AI Developers: Millions of New Programmers
	Quality, Craft, and the Evolving Role of Professionals
	Conclusion

