
Project VulnAI: AI-Powered

Vulnerability Risk Management

Platform
by Dinis Cruz and ChatGPT Deep Research, 2025/02/13

1. Executive Summary

Organizations continue to struggle with a deluge of security vulnerabilities and alerts, but traditional

vulnerability management approaches have failed to translate these findings into effective risk reduction.

Project VulnAI proposes a next-generation SaaS platform for AI-driven vulnerability management that

prioritizes risk context over raw vulnerability counts. By leveraging semantic knowledge graphs,

automated AI analysis, and a deterministic data pipeline, this platform will unify diverse security data

(scans, code, cloud config, runtime logs, business context) into a coherent risk knowledge base. The goal

is to help security teams and developers make smarter decisions – focusing remediation efforts where

they matter most to the business – and finally close the gap between vulnerability identification and

actual risk mitigation.

Key features and principles include:

Risk-Centric Prioritization: Every vulnerability is contextualized with business impact, exploitability,

and environment details. Instead of a long list of “high sev” findings, the platform produces a ranked

set of issues to fix first based on true risk to the organization (e.g. external exposure, sensitive data

involved, active exploitation in logs). This aligns with emerging best practices in risk-based

vulnerability management.

AI-Powered Analysis with Traceability: The system uses Large Language Models (LLMs) to analyze

and enrich findings (e.g. explain impact in plain English, suggest likely attack paths), but does so in a

controlled, transparent pipeline. Each AI step produces structured output (JSON) that is saved for

audit, rather than one big black-box inference. This ensures explainability and allows human

verification of the AI’s reasoning.

Semantic Knowledge Graph Backbone: All data is stored as an interconnected graph of

vulnerabilities, assets, code, and contextual information. This knowledge graph approach allows

complex querying (e.g. “show me all critical vulns on internet-facing systems with customer data”)

and enables mapping technical issues to business concerns. The platform treats each data source

as part of a unified ontology, linking development teams, components, and risks. By representing

security knowledge as a graph, we can discover non-obvious connections (like a low-level library flaw

that in reality exposes critical customer information via an upstream application).

Ephemeral & Serverless Architecture: The backend is designed for cost-efficiency and scalability,

spinning up analysis engines on-demand. For example, graph databases and scanners run as

ephemeral containers/functions – loaded with data when needed and torn down afterwards. This

yields the performance of in-memory processing with zero cost when idle. The platform can

horizontally scale analyses (e.g. run 50 code scans in parallel) and handle sporadic heavy workloads

without maintaining expensive always-on infrastructure.

Open-Source Core and Extensibility: Project VulnAI embraces an open-source model for its core

engine and data schemas, fostering community contributions and transparency. All key components

– from the graph data store to connectors and even AI models – leverage open-source technologies

where possible. This not only avoids proprietary lock-in but accelerates development of integrations

(community-built connectors for various scanners, cloud platforms, issue trackers, etc.). A vibrant

open-source community will help keep the platform at the cutting edge of security knowledge while

allowing customers full visibility into how analysis and scoring are performed.

By combining these elements, Project VulnAI aims to deliver a comprehensive vulnerability management

solution that actually reduces risk – by guiding organizations to fix the right issues and confidently

accept or mitigate the rest. This brief outlines the vision, technical architecture, and business case for

bringing such a platform to market in 2025, at a time when AI and graph technologies are finally mature

enough to tackle this long-standing cybersecurity challenge.

2. Industry Landscape & Challenges

Traditional vulnerability management has become a graveyard of good intentions. Over the past decades,

countless tools and projects have tried to help organizations “manage vulnerabilities,” yet breaches

caused by unaddressed known issues remain commonplace. It’s important to understand why past

approaches have fallen short:

Volume and Noise: Scanning tools today can easily enumerate tens of thousands of issues in a

large environment. Security teams are overwhelmed by volume and high false-positive rates.

Prior attempts at vulnerability management often turned into glorified ticketing systems –

shuffling spreadsheets of vulns – without truly reducing the noise. Teams end up “managing

vulnerabilities” as an endless list, rather than managing actual risk.

→

Lack of Context and Prioritization: A critical flaw in a demo application might get the same

severity rating as one in a mission-critical system. Past platforms failed to incorporate context

about where a vulnerability resides, how exposed it is, and the potential impact if exploited. This

context gap is the primary reason fixes don’t get prioritized correctly. Simply put, not all criticals

are equal, and a scanner’s output alone can’t tell you which ones matter. Industry research and

leaders have been calling for contextual, risk-based approaches (e.g. Tenable’s push for RBVM

– Risk-Based Vulnerability Management), but legacy tools haven’t delivered.

→

Siloed Data & Disconnected Tools: Vulnerabilities live in many forms – application code bugs,

container misconfigurations, leaked credentials, cloud permission issues. Organizations use

separate scanners and systems for each (SAST, DAST, SCA, CSPM, etc.), and previous

management solutions struggled to integrate all these findings. They often became yet another

silo where someone had to manually import data. Without integration, they missed

compounded risks (e.g. a minor code flaw + a misconfigured cloud storage = major breach).

The inability to bridge these silos and correlate related findings is a major gap in current

offerings.

→

In 2025, however, new opportunities have emerged to finally solve these challenges. Three trends are

converging:

1. Generative AI & LLMs – Modern AI models can digest and summarize massive amounts of

information. They can explain code, analyze configurations, even simulate how an attack might

unfold. This opens the door to automating much of the heavy analysis work that previously fell on

human experts. Crucially, AI can be used not just to find vulnerabilities (e.g. code analysis) but to

contextualize and prioritize them by correlating disparate data points – something humans struggle

to do at scale.

2. Knowledge Graphs & Contextual Datastores – The rise of graph databases and knowledge

ontologies means we can store complex relationships between vulnerabilities, systems, data, and

business processes. Instead of each finding living in a flat list, it lives in a richly connected graph.

Query languages and graph algorithms can then be used to identify, say, choke points (a single

component whose failure opens many attack paths) or to traverse an attack chain. This holistic view

was impractical in older SQL-based vulnerability managers but is natural with graph technology.

3. Cloud-Native & Ephemeral Architecture – Companies have more of their infrastructure in cloud and

serverless environments, which means we can take a cloud-native approach to processing

vulnerability data. Spinning up ephemeral analysis jobs on-demand is feasible and cost-effective.

Also, organizations are increasingly open to hybrid deployment models: a SaaS that can also run on-

prem or in a private cloud for sensitive data. This flexibility is critical for security tools due to data

sovereignty and privacy concerns.

Project VulnAI sits at the intersection of these trends. The industry is ready for a platform that uses AI to

bridge security and business, uses graphs to connect the dots, and uses modern cloud architecture to

scale seamlessly. In the next sections, we outline how we will build this platform to finally solve the long-

standing vulnerability management problem.

3. Vision and Key Principles

Remediation Workflow Misalignment: Developers view most “vulnerabilities” as just more

backlog bugs – and often, security’s list doesn’t align with engineering’s priorities. Past

platforms focused narrowly on security users, failing to engage development and operations

teams. This led to poor adoption, with devs perceiving the tool as noise. In reality, fixing

vulnerabilities competes with feature work, and without demonstrable business rationale, the

fixes won’t happen. The lesson is that vulnerability management must speak the language of

both security and development, integrating with issue trackers and distinguishing truly

dangerous flaws from minor issues. It should help decision-makers answer “what if we don’t fix

this?” in business terms.

→

Historic Attempts and “Bodies on the Road”: Many companies (and open-source projects) tried

building centralized vulnerability dashboards or repositories. Most failed or saw limited success

because they were architecturally heavy and focused on compliance (counting vulns, generating

reports) rather than enabling action. They treated the symptom (lots of vulns) with more

process (tickets, charts) instead of addressing root causes: lack of risk insight, friction in

remediation, and poor accountability. This history informs our approach – we avoid creating

another static database of vulns and instead build a dynamic decision-support system.

→

To design an effective AI-driven vulnerability management platform, we establish a set of guiding

principles. These principles combine lessons from past failures with the possibilities of today’s tech:

3.1 Risk-Driven Approach, Not Vulnerability-Driven: The core mission is to manage risk, not just

vulnerabilities. This means the platform treats a “clean” scan with zero reported vulns as not an end goal

by itself – instead, it continuously asks: what is our residual risk? In practice, this principle drives features

like risk scoring for each finding (taking into account asset value, threat likelihood, exploit availability,

etc.) and recommendations to accept or mitigate risk when appropriate. Success is measured by

reduced incident likelihood and impact, not just fewer open vulns in a tracker. This mindset shift

addresses the misconception that the goal is to eliminate vulns at all cost – instead, the goal is to make

informed risk decisions that align with business objectives. If a vulnerability is deemed low risk, well-

understood, and expensive to fix, the platform might recommend leaving it and focusing elsewhere.

Conversely, if a normally low-severity bug sits on an exposed critical system, the platform will flag it as

high priority due to risk context. All of this ties into ensuring the business operates within its risk

appetite. In other words, VulnAI acts as the translation layer between security findings and business risk

tolerance.

3.2 Unified Knowledge Graph of Security Data: At the heart of the platform is a semantic knowledge

graph that models the organization’s technology and security landscape. Every vulnerability is a node in

this graph, linked to: the asset or code component it affects, the business process or product it’s part of,

the development team responsible, and any relevant runtime data (e.g. logs showing it has been probed

by attackers). Additional nodes capture meta-information like compliance requirements or threat intel

(e.g. “CVE-2025-1234 is being exploited in the wild”). This graph-of-graphs approach allows different

teams to maintain their own view (ontology) – e.g. one team’s “Customer DB” is another team’s “Asset

#42” – while mapping between them. By treating “everything as connected”, the platform can answer

complex questions and perform multi-hop reasoning. For example, one could query: “Show me all

vulnerabilities affecting systems that handle customer credit card data, and rank them by potential financial

impact.” This would traverse the graph from data nodes (credit card data) to systems to vulnerabilities,

pulling in business impact information. Traditional tools without a graph backend simply cannot do this.

Project VulnAI’s graph is the single source of truth that breaks down silos: static application security

testing (SAST) findings, dynamic testing results, cloud infra scans, container scans, bug bounty reports,

and even manually discovered issues all end up in the graph with appropriate relationships.

3.3 AI-Augmented Analysis with Deterministic LETS Pipeline: We leverage AI heavily, but in a structured,

deterministic way. The platform employs a multi-stage LLM pipeline – following the LETS approach

(Load, Extract, Transform, Save) – to ensure each step is traceable and repeatable. Rather than one

monolithic AI that magically “does VM,” we break the analysis into stages, for example:

Extraction: Load raw data (scan results, code, configs) and use parsers or LLMs to extract key

entities (e.g. vulnerabilities, components, entry points). This might involve an LLM reading a

scanner’s output and normalizing it into a structured format or an AST parser extracting functions

from source code.

Transformation/Enrichment: For each entity, call an LLM to enrich with context. For code flaws, ask

“what could an attacker do with this?”; for a server misconfiguration, ask “what data could be

exposed?” The LLMs here add annotations like impact descriptions, likely attacker skill required, etc.

Importantly, the prompts are designed to yield structured JSON outputs, not free text, so that results

can be saved and verified (e.g. an LLM might output {"vuln_id": "...", "likely_impact":

"...", "affected_data": [...]}).

Correlation: Combine the enriched data with the wider graph. This stage uses code logic (not AI) to

link things together – e.g. matching a vulnerability in a library to all applications that use that library,

or correlating a web vuln with server logs that show exploit attempts. Here we might also use AI to

infer connections, such as “this vulnerability is in an authentication module, likely it’s related to user

login risk” and then attach that insight to the graph.

Decision & Reporting: Finally, an LLM can help draft human-readable risk reports or

recommendations based on the graph. For instance, it can generate an executive summary: “System

A has 3 critical vulnerabilities that put customer PII at risk; fixing Vuln X would reduce overall risk by

80%.” Because this summary is generated from the structured graph data, it can cite the evidence

(and we can regenerate it as needed). Different report views (developer ticket vs CISO report) can be

produced from the same knowledge base.

At each stage, the outputs are saved and versioned – nothing is lost in a hidden AI mind. This

determinism means if the AI says “Vuln X is high risk”, we have the chain of data supporting that: perhaps

“because Vuln X is on a server facing the internet and handling finance data, and an exploit script was seen

hitting it last week.” All of that lives in the graph for inspection. The LETS pipeline thus gives us the

benefits of AI (pattern recognition, language understanding) without its typical downsides (opacity and

inconsistency). If a model’s output is incomplete or incorrect, the system spots it (e.g. JSON schema

validation fails) and can retry or flag for review, rather than silently producing a flawed recommendation.

3.4 Memory-First, Ephemeral Data Stores: In line with modern serverless thinking, the platform’s data

architecture is ephemeral-by-design for efficiency and scalability. We utilize a memory-first graph

database (inspired by Dinis Cruz’s MGraph-DB research) that can spin up on demand, load the necessary

slice of the knowledge graph, perform analyses, and then shut down – persisting results to durable

storage (like S3 or a file store). This is akin to treating the database like a function: when idle, no

resources are consumed, “no database process or connection needs to be alive – zero cost when not in

use”. This principle is crucial given the sporadic nature of vulnerability scans and analyses (e.g. big scans

might run weekly or when new code is deployed). It avoids the need for an always-on, costly graph DB

cluster. Each analysis task (say, correlating a new scan’s results into the graph) can run in isolation,

ensuring perfect reproducibility and eliminating state drift. This ephemeral approach also simplifies on-

premise deployments – an organization could run the entire analysis pipeline in a temporary environment

within their network, without long-running services to maintain. By persisting all intermediate data to

versioned files (the “Save” in LETS), we enable easy debugging, auditing, and even regeneration of past

analysis runs.

3.5 Strong Typing and Data Quality Controls: Given the graph will aggregate data from many sources

(and many AI outputs), maintaining data quality is paramount. We adopt a Type-Safe modeling approach

for the knowledge graph, meaning every node and relationship follows a defined schema (ontology) and

is validated. For example, a vulnerability node might be defined to require fields like severity ,

exploit_code_maturity , asset_impact etc., and a relationship “AFFECTS” might only connect a

Vulnerability to an Asset node of the correct type. This prevents garbage data or mismatches, especially

from automated processes. If an LLM tries to tag a vulnerability with an undefined risk category, the

system will reject it unless the schema is updated. This principle – essentially treating the knowledge

graph with the same rigor as an application data model – ensures that as the system grows, it remains

trustworthy. The graph becomes a self-consistent data store that can be queried reliably, and it also

serves as documentation of how we categorize and link security concepts (vulns → assets → business

processes → mitigations, etc.). This is influenced by the OSBot Type_Safe classes that have been used in

prior Dinis Cruz projects to enforce consistency in graph data.

3.6 Developer-Inclusive Workflow: For any vulnerability management program to succeed, it must

integrate with development and operations workflows. A guiding principle is that VulnAI should be as

useful for developers and SREs as it is for security analysts. Concretely, this means:

The platform will integrate with issue trackers (e.g. Jira, GitHub/GitLab issues) to push

recommended fixes or tickets for high-risk issues directly to the teams responsible. It won’t live in a

vacuum.

It will also track “bugs” and improvements, not just security vulns. A key insight is that a security

bug is still a bug; if our platform can help triage and manage general software defects (e.g. crashes,

performance issues) alongside security issues, it provides broader value to engineering. We plan to

allow ingestion of bug reports or incidents into the graph, so that teams see everything in one risk-

oriented backlog. This cross-pollination can even highlight connections (e.g. a recurring bug could

increase the impact of a vulnerability, or vice versa).

The user experience will allow different views: a developer might get a view of “my application

module: 2 vulns to fix (one critical, one low), 3 QoL bugs”, whereas a CISO sees an aggregated risk

dashboard. The language used in reports will adapt to the audience – enabled by the AI’s natural

language generation – so developers get technical guidance and execs get impact summaries.

By aligning with developers’ interests (code quality, reliability) and reducing their toil (through automated

analysis and even code-fix suggestions in future versions), we increase adoption. If developers find that

VulnAI helps them catch issues early and even improves code (through bug detection), they will actively

use it rather than perceive it as a compliance burden.

3.7 Model-Agnostic and Future-Proof AI Strategy: In the fast-moving AI landscape of 2025, tying our

fortunes to any single model or solely proprietary AI would be a mistake. VulnAI’s design treats AI models

as pluggable commodities – we can leverage the best available LLMs (open-source or API-based) at any

given time, and even run multiple models in concert for different tasks. We explicitly avoid training a large

custom model from scratch; instead, we focus on clever prompting, fine-tuning smaller models if needed,

and orchestrating model outputs with code. This approach ensures that as new, more powerful models

emerge (e.g. GPT-5, Claude-next, Google’s Gemini etc.), our platform can incorporate them to improve

results without a total overhaul. Our competitive moat is not a proprietary model, but the data pipeline,

integrations, and feedback loops we build around models. In fact, the platform could allow customers to

plug in their preferred model (some highly regulated customers might only allow on-prem LLMs, for

instance). By designing for model flexibility, we make the solution future-proof and avoid being leap-

frogged by the next AI advances. The better the models get, the better our analysis becomes – and all the

deterministic plumbing we built (graphs, pipelines, schemas) will amplify, rather than be replaced by,

those model improvements. This principle also mitigates the risk of dependency on a single vendor or

expensive licensing – we remain agile in the rapidly evolving AI toolscape.

3.8 Open-Source and Community Collaboration: We intend to build the core of VulnAI as an open-source

project (likely under a permissive license) while offering commercial SaaS and support around it. This

principle is both philosophical and practical:

Trust and Transparency: Security teams are inherently cautious – they’re more likely to adopt a

solution if they can inspect its guts and be sure there are no hidden data leaks or malicious logic. An

open-source core means the analysis rules, data handling, and even AI prompt templates could be

visible to the community. This transparency engenders trust that is crucial for a security tool that

might have access to sensitive code and findings.

Faster Integration Development: There are countless security tools and data sources. It would be

impossible for one vendor alone to build integrations for all. By open-sourcing and providing a plugin

architecture, we enable others (individual contributors, consulting firms, even customers) to create

connectors and share mappings/ontologies for new tech. For example, someone could contribute a

parser that ingests output from a niche IoT scanner into the VulnAI graph. Community contributions

can drastically accelerate our coverage of the security landscape.

Ecosystem Moat: If VulnAI becomes the central “operating system” for managing vulns and risks, a

rich ecosystem of extensions and customizations will grow. This makes it harder for a closed

competitor to catch up, and it provides a compelling reason for users to stick with the platform

(similar to how open-source projects like Kubernetes or Terraform became industry standards). We

will encourage an ecosystem where users can write custom analysis rules, UI plugins, and more.

Monetization Model: We will monetize through value-added services – a managed cloud offering,

premium features (like advanced analytics, proprietary threat intel feeds integration), and enterprise

support (SLAs, custom development). This is in line with successful open-core companies. By not

charging license fees for the base platform, we remove barriers for companies to try it. Once they

rely on it, we offer convenience and support through the SaaS or self-hosted enterprise editions. As

noted in similar project briefs, an open-source base “opens the door for wider adoption” and still

yields strong commercial upside through services and reputation.

3.9 Targeted Use-Case Focus (Depth over Breadth): A practical principle for our go-to-market is to start

with specific high-value use cases rather than trying to boil the ocean of vulnerability management at

once. For example, we might choose an area like cloud infrastructure misconfigurations or identity &

access risk as an initial focus. These are domains where current pain is acute – e.g. cloud entitlements

(IAM roles and permissions) are notoriously over-provisioned and hard to analyze, leading to major

breaches. Our platform could shine by using AI to analyze cloud configs, combine it with vulnerability

data, and identify the toxic combinations that actually matter (like an over-permissive S3 bucket that

coincidentally has a public exploit). By solving a few such cases end-to-end (with full context and great

visualization), we can demonstrate value quickly. Other promising focuses might be:

Application Dependency Risks: Use LLMs to scan code for usage of vulnerable libraries or

dangerous functions, then map those to known CVEs in the graph, prioritizing if that code is

externally exposed. Many dev teams struggle to chase dependabot alerts; VulnAI could intelligently

prioritize those based on how and where the library is used.

Pentest Insight Acceleration: Automate the tedious part of translating penetration test reports into

actionable remediation plans (this aligns with the PIA use-case already identified in Dinis’s research).

Our AI pipeline can take a long pentest report and output a concise set of risks and recommended

fixes, auto-populating the graph with that info for cross-correlation.

Cloud Attack Path Mapping: Ingest cloud vulnerability scanner findings (like flaws in AWS

configurations) and automatically correlate with network exposure and identity permissions to map

potential attack paths (similar to what tools like Wiz.io started doing, but leveraging our graph/AI

combo for even richer analysis).

By nailing a specific use case, we create a beachhead and reference success stories. The platform’s

design is flexible to expand into other areas over time, but this principle ensures we always solve

concrete problems for customers first, rather than present a nebulous platform.

3.10 Deployment Flexibility and Security: Finally, we recognize that different customers will have

different needs for deployment. Some will consume VulnAI as a multi-tenant SaaS (easy setup, our

cloud). Others – especially in financial or government sectors – will insist on running it themselves (due

to sensitive code and data). Our architecture will be cloud-agnostic and portable: containerized

microservices or functions that can run in AWS, Azure, on-prem Kubernetes, or even fully air-gapped

environments if needed. This is enabled by our ephemeral design (no heavy persistent server

requirements) and use of file/object storage as the database. We will package the solution for easy

deployment (Helm charts, Terraform, etc.). Security is paramount: no customer should have to send their

raw scan data or source code to our cloud if they don’t want to. Even in the SaaS offering, we’ll architect

for zero knowledge of sensitive assets (for instance, the heavy analysis could run in a customer-

controlled enclave with only non-sensitive summaries sent to the SaaS for aggregation). By having an

“offline mode”, we actually strengthen the platform – it forces us to decouple data ownership from the

service. This principle might seem at odds with a pure SaaS business, but in 2025, trust is the currency in

cybersecurity. We believe offering a Secure SaaS (where the customer can choose what data leaves their

environment) will be a differentiator. Technically, this could involve providing an on-site data collector

component (open-source) that does initial processing and only sends back high-level metrics or

anonymized info to the cloud. In any case, flexibility here will remove adoption blockers and also saves

us from building a massive multi-tenant data storage (each customer’s data can be isolated in their own

storage if needed).

These tenets form the foundation of Project VulnAI’s design and strategy. In the next section, we delve

into the actual architecture and components that bring these principles to life.

4. Technology Stack & Architecture

Overview: The VulnAI platform is composed of loosely coupled services orchestrated around the

knowledge graph. The high-level workflow is: collect data → build/update graph → run AI enrichment →

provide outputs (dashboards, reports, integrations). Below is a breakdown of the core components and

technologies:

4.1 Data Ingestion Layer: This layer comprises connectors and APIs to pull in data from various

sources:

→

Security scanners: Connectors for tools like OWASP ZAP (web vuln scanner), Snyk or

Dependabot (dependency issues), Nessus/Tenable (network vulns), Trivy (cloud/container

vulns), etc. Each connector translates scan results into a common schema and feeds them into

the graph as initial “vulnerability nodes” with basic attributes (severity, description, asset

identifier).

→

Code repositories: Integration with Git to ingest source code (or bytecode) for analysis. We’ll use

language-specific analyzers (AST parsers) and also leverage LLMs for code review. This

populates the graph with code entities (functions, modules) and potential code flaws or security

hotspots.

→

Cloud and Infrastructure: Connectors to cloud APIs (AWS, Azure, GCP) to gather configuration

data (e.g. security groups, IAM roles, storage bucket settings) and infrastructure-as-code scans.

These become graph nodes like “EC2 instance -> running AMI X -> has security group Y ->

allows 0.0.0.0:80” etc. Misconfigurations or risky settings are flagged as vulnerability nodes.

→

The ingestion layer uses a mix of serverless functions and lightweight services. For instance, a GitHub

Action could trigger on code push to send code to VulnAI for analysis; a scheduled Lambda function

could pull the latest cloud config daily. All ingestors output standardized JSON to a message queue or

object storage, which then signals the next stage.

4.2 Ephemeral Graph Database (MGraph-DB): At the core, we use the memory-first graph database

approach (based on MGraph-DB) to manage our knowledge graph. Instead of a constantly running

database, each analysis job will:

Load the current knowledge graph slice relevant to its task (from JSON files in storage).

Perform in-memory graph mutations and queries.

Save the updated graph back to storage (writing out JSON files or patches).

For example, when a new scan result comes in, a function spins up, reads the existing graph (or relevant

part like the host or app in question), adds new vulnerability nodes and links, runs internal consistency

checks, and writes back. This design offers horizontal scalability (multiple graph ops in parallel on

different parts of the graph) and easy versioning (each change produces a new versioned artifact). The

graph is stored as a collection of JSON documents (which could be in S3, a Git repo, or a database for

files). This also means we can leverage standard DevOps tools (like Git diff) to track changes in the

security posture over time.

The graph data model follows a graph-of-graphs concept where, for instance, each application might

have its own subgraph of components and vulnerabilities, and a higher-level graph connects those apps

to business functions. The MGraph engine natively supports merging subgraphs, querying neighbors,

etc., with high performance in-memory. When large, we can selectively load parts of the graph to keep

memory usage efficient. This component is the “single source of truth” data store, albeit distributed in

files – which avoids the need for complex graph DB clusters and aligns with our serverless strategy.

4.3 LLM Analysis Modules: Various AI modules are plugged into the pipeline:

Code Analysis LLM: When code is ingested, an LLM (like GPT-4 or an open model like StarCoder) is

invoked to examine the code for potential vulnerabilities or insecure patterns. For each function or

class, it might produce a summary or flag (e.g. "uses exec() on user input"). These results are

added to the graph as annotated nodes (a function node might get a child node

“PossibleCommandInjection” with details). This is done stage-wise to ensure we don’t overflow

context – e.g. analyze file by file, then have another stage to link across files if needed.

Incident & Exploit Data: Feeds from SIEM logs or IDS alerts can be ingested to tag vulnerabilities

that are seeing active probing or exploitation attempts. Threat intelligence feeds (CVE

databases, exploit DB, social media monitoring) also flow in – enriching the vulns with info like

“exploit available” or “ransomware group X targeting this vuln”.

→

Business Context: This unique input includes things like asset inventory databases (CMDBs),

data classification lists (what data is on which system), and even org charts or team ownership

information. For example, we might ingest a simple CSV mapping application names to

business owners and criticality ratings. These inputs allow the graph to connect a technical

finding to a business impact (e.g. “this server is tagged as PCI compliant” or “this app is owned

by the Payments team”).

→

Vulnerability Context LLM: For each vulnerability node added (from any source), an LLM can be

tasked with providing context and impact analysis. It might take as input the technical description of

the vuln plus info from the graph (asset type, data on asset, etc.) and output fields like: likely impact

(“remote code execution vs denial of service”), ease of exploit, worst-case scenario if exploited, and

remediation hints. This is where we essentially imbue each raw finding with expert knowledge. For

known vulnerabilities (with CVEs), this module can also pull from databases (we’ll maintain a local

CVE→LLM digest index perhaps). The output is attached to the vuln node in the graph (as properties

or linked “analysis” nodes).

Risk Scoring Engine: This is a mix of AI and deterministic logic. We will calculate a composite risk

score for each issue. Deterministically, we combine factors (CVSS base score, asset criticality, data

sensitivity, exploit availability, etc.) into an initial score. Then, we might use an LLM to sanity-check or

categorize the risk (e.g. “High/Med/Low” with justification). The LLM can consider nuances a fixed

formula might miss. The result is a risk rating that is both numeric and qualitative, which is stored in

the graph and used for prioritization.

Reporting and NL Query Module: On the front-end side, we allow users to ask questions (in natural

language) or request summaries. An LLM is used here to translate a question into graph queries or

to compose a narrative from graph data. For instance, if an exec asks, “Why is vulnerability X not

fixed yet?”, the system can trace in the graph: find X, see it’s assigned to team Y, they have a

comment that a fix is delayed due to third-party dependency – all of which the LLM can summarize:

“Vuln X remains open because it’s in a third-party component that the Payments team cannot patch

immediately. Compensating controls are in place (WAF rule) and the issue is scheduled for next

quarter’s update.” The LLM did not invent facts – it pulled from graph data (which could include a

linked Jira ticket or a note). Our use of AI in the interface thus makes the wealth of structured data

accessible in a friendly way, while always citing the underlying data for transparency.

All LLM modules are orchestrated by our pipeline, and we maintain prompt templates and schemas for

each. For example, the prompt for the vulnerability context might be: “You are a security expert. Here is a

vulnerability and the system it’s on (with context). Provide output in JSON with fields: impact,

exploitability, fixRecommendation.” This controlled output is crucial. We will also incorporate feedback

loops – if an LLM’s output fails validation (malformed JSON or nonsense), the system can automatically

retry with adjusted prompt or fallback to a simpler analysis.

4.4 Application & Interface: On top of the backend, we’ll build a web dashboard and integration

endpoints:

The dashboard will allow visual exploration of the vulnerability graph (filtered by user role). It might

show a high-level risk score for the organization or by application, a trending chart (risk reduced over

time), and tables of top risks. Users can drill down from an application or system into the specific

vulnerabilities, view the context (e.g. “this server is affected by 3 vulnerabilities, here’s how they

connect”). We can incorporate graph visualization for attack paths – e.g. highlight a chain: Vuln in

App -> App connected to DB -> DB has sensitive data. This visual aid helps drive the point for

remediation.

Reports & Exports: The platform can generate comprehensive vulnerability reports automatically (as

PDFs or Confluence pages, for example) tailored to different stakeholders. These reports, generated

by the AI module, will contain an Executive Summary (in business terms), a Technical Detail section

(for engineers), and an appendix mapping findings to compliance controls (for auditors). They will

effectively eliminate the current manual labor of writing up findings after assessments.

Integrations: We will provide REST APIs and webhooks for key events (like “new critical vuln found”)

so that organizations can integrate VulnAI with their workflows. For example, a critical issue could

trigger a Slack/Teams notification to the incident channel. Integration with ticketing: when the

system creates fix tasks, it can auto-file them in Jira and then track the status via Jira API. We also

plan CI/CD integration – a plugin for CI pipelines can query our platform “are there any showstopper

vulns in this build?” and fail the build if yes, or at least warn. This encourages fixing issues earlier in

the dev cycle.

Security & Access Control: The app will have role-based access, so teams can only see their stuff,

and certain users can see global info. Data encryption and proper auth (likely SSO/OAuth) will be in

place. Since we’re dealing with sensitive findings, we’ll implement strong access controls, audit

logging of who viewed what, etc., to align with enterprise security requirements.

4.5 Open-Source Components: In building this stack, we leverage existing open projects wherever

possible. Examples include:

OWASP Security Bot (OSBot) for orchestration and integration glue – OSBot provides scripts and

frameworks to connect security tools, which we can reuse for ingesting scanner outputs and driving

workflows.

The Cyber Boardroom (Athena) AI advisor – an open GenAI tool for explaining security issues in

simple terms. We plan to adapt modules of Athena for our reporting AI so we don’t start from scratch

in how to communicate issues clearly.

Graph libraries: While our primary graph store is custom (MGraph-DB), we can use libraries like

NetworkX for any heavy-duty querying if needed

LLM Models: We will default to open-source LLMs (like Code Llama, GPT-J, etc.) for on-prem

deployments to ensure data never leaves. Our SaaS might use OpenAI or Anthropic models for

higher quality initially (with careful prompt design to avoid sensitive data exposure), but an

organization can configure the platform to use a local model if preferred. This flexibility is enabled by

our model-agnostic design.

Architecture Diagram: [Not shown here] Conceptually, the architecture can be seen as three layers (Data,

Brain, Presentation) with the Knowledge Graph at the center. The Data layer brings information in and out

of the Graph. The Brain layer (AI and rules) processes and enhances the Graph. The Presentation layer

allows users and systems to query and interact with the Graph. All components communicate through

well-defined interfaces (e.g. publishing events when new data arrives, APIs to query risk scores) to keep

the system modular.

5. Implementation Plan

Delivering Project VulnAI will be done iteratively, ensuring we can demonstrate value early and

incorporate feedback. The implementation plan is outlined in phases:

Phase 0: Foundation (Months 0-1) Goal: Set up the basic infrastructure, data model, and a simple end-to-

end flow with dummy data.

Define the initial ontology for the knowledge graph (e.g. node types: Vulnerability, Asset, Application,

Data, Team; relationships: “AFFECTS”, “OWNS”, “CONNECTS_TO”, “MITIGATED_BY”, etc.).

Develop the basic MGraph-DB file-based graph store and get a simple graph loading and saving

working. We can start with a small sample (e.g. one app, one vuln) as JSON and ensure we can load

it, query it, persist it.

Implement a skeleton of the LETS pipeline: maybe a single function that takes a hard-coded vuln and

runs a trivial AI enrichment (e.g. classify it as high/medium risk) and saves the result. This proves

out the JSON in/out and validation.

Stand up the scaffolding for the web UI (perhaps using a modern JS framework) and show the

sample data on a simple page. Also set up a basic API endpoint (e.g. GraphQL or REST) to fetch

graph data for an asset.

Success at this stage: We have a “Hello World” where a vulnerability goes in and a risk-ranked

vulnerability comes out with a basic visualization.

Phase 1: Targeted MVP (Months 2-5) Goal: Deliver a Minimum Viable Product focusing on one high-

impact use case, e.g. Cloud Vulnerability Risk Management.

Data Ingestion: Build connectors for 2-3 data sources relevant to the use case. For cloud, this might

be AWS Config (for cloud config issues), an open-source cloud scanner (like Scoutsuite or Prowler),

and maybe AWS CloudTrail logs for detecting unusual activity. Ensure these populate the graph

correctly.

AI Enrichment: Implement the LLM module for contextualizing cloud vulns. For example, if a security

group allows 0.0.0.0/0 on a database port, the AI should label it “High risk: database exposed to

internet”. Fine-tune prompts for this context. Use a small open-source model initially to test the

concept (to avoid costs while prototyping).

Risk Scoring: Code a risk scoring function for cloud findings. Include factors like public exposure,

data sensitivity (we can simulate this if we tag an asset as containing sensitive data), compliance

impact. The AI can add human-like reasoning (“this is non-compliant with CIS benchmark, so higher

risk”).

User Interface: Develop the MVP dashboard for this use case. For instance, a “Cloud Risks” view that

lists cloud resources with their risk score, and ability to click and see the issues. Include a simple

graph visualization highlighting an example attack path (e.g. “open S3 bucket -> sensitive files

accessible”).

Reporting: Generate an example report for the use case (e.g. “Cloud Risk Assessment Report Q3

2025”) automatically, using the data. This report should have an executive summary of top cloud

risks and a technical section. We’ll verify it reads well and adjust the AI template as needed.

Testing & Data Validation: Run the MVP on a known test environment (maybe an intentionally

vulnerable AWS setup or one provided by a design partner client). Validate that it correctly identifies

and prioritizes issues. Fine-tune based on false positives/negatives encountered.

By end of Phase 1, we expect to have a working slice of the platform that can be demoed to

stakeholders: e.g. “In our demo AWS account, VulnAI found 50 issues, flagged 5 as critical. Here’s why

those 5 matter and how to fix them.” This will help gather buy-in and iterative feedback.

Phase 2: Expand Coverage (Months 6-9) Goal: Broaden the platform to handle application code

vulnerabilities and integration with developer workflow.

Add SAST/DAST Integration: Implement connectors for application scanning. For SAST, perhaps

integrate an open-source tool like Semgrep or CodeQL. For DAST, maybe OWASP ZAP automation.

Feed their results into the graph.

AI Code Analysis: Extend the LLM pipeline to analyze code directly. Use our knowledge from Phase 1

to prompt the AI to look at code for vulnerabilities (this might involve chunking large code and

focusing on security-relevant parts). This will likely leverage the “Code Entity Extraction” stage

described earlier. Start with one language (e.g. Python or JavaScript) to limit scope.

Enrich with Business Context: Bring in some business mapping for applications. For example,

maintain a YAML or small database where we list each app’s business owner and criticality

(High/Med/Low). Ingest that into the graph. Ensure that when the risk score is calculated, it factors

this (so a vuln in a High criticality app gets a boost in score).

Workflow Integration: Implement the Jira/issue tracker integration. When a high-risk vuln is

identified, test creating a Jira ticket with details and assignment to the appropriate team (the graph

knows the “Owner Team” of an application, so it can tag the ticket).

Developer UI & Feedback: Create a developer-centric view, maybe a CLI or IDE plugin, where a

developer can query “show me vulns in my project”. This could simply call the API and show results

in VSCode, for example. Also, allow developers to provide feedback (like “false positive” marking)

which we capture in the graph for future AI training or filtering.

Open-Source Release: By month ~9, prepare the core codebase for an open-source release (GitHub).

Clean up documentation, write examples, and ensure no sensitive info in code. Publishing it will start

attracting contributors and testers.

End of Phase 2, VulnAI should handle both cloud and application scenarios, making it a more complete

VM platform. We’d likely pilot it with one or two friendly organizations at this point to test it in a real

environment and gather success stories.

Phase 3: Hardening and Scale (Months 10-12) Goal: Prepare the platform for production use at scale

and polish commercial features.

Security Hardening: Perform thorough security testing on VulnAI itself (it would be ironic to have

vulnerabilities!). Ensure all data flows are encrypted, the auth is solid, and add features like role-

based access control, multi-factor auth for the UI, etc.

Performance Tuning: If some analyses are slow, optimize them. Possibly introduce caching for

repeated queries. Ensure that for say 10k nodes the in-memory operations remain quick (we might

test on a large dataset).

Scalability Tests: Simulate multiple projects or a large enterprise scenario to see that our serverless

approach holds up. Optimize the storage (maybe chunk the JSON per project to avoid giant files). If

needed, consider an optional persistent graph DB for query-intensive deployments (some clients

might opt to keep the graph loaded in Neo4j for instant query responses – we can document this

option).

User Experience & UI Polish: Incorporate feedback on the UI – maybe add a search function, filters,

and fine-grained report customization. Ensure the platform is intuitive for both technical and non-

technical users. This likely involves refining how information is presented (e.g. maybe a “risk heat

map” view for management, or a timeline of risk reduction).

Documentation & Training Materials: Develop comprehensive docs for installing, integrating, and

using VulnAI. Also create some tutorial videos or demos (like “How to triage vulnerabilities with

VulnAI in 5 minutes”). This will facilitate adoption, especially for the open-source community.

Launch Planning: As we near the 12-month mark, plan the official launch. This includes marketing

(case studies from pilots, blog posts), community outreach (presenting at OWASP chapters or

security conferences about VulnAI’s open-source release), and building a small support team to

handle inquiries.

Milestone: By the one-year point, Project VulnAI should be ready for its public launch – either as a beta or

GA (depending on confidence). It will be capable of ingesting a variety of vulnerability data, producing

risk-prioritized results, and integrating into workflows. The launch would likely highlight our open-source

core (“community-driven security brain”) and the availability of a cloud-managed option for ease of use.

Beyond Year 1: The roadmap would continue with adding more modules (e.g. container security, mobile

app security analysis), improving AI with new model releases, and perhaps features like automatic

remediation suggestions (AI-generated fix pull requests for code vulns), and more advanced risk

quantification (e.g. monetary risk modeling). We also anticipate building out more knowledge sharing –

for instance, anonymized data sharing where customers can opt in to share patterns of attacks or

common vuln causes, which our AI can learn from to improve overall recommendations for everyone.

Because of the open nature, the platform could evolve into a community-driven “security knowledge

brain” that continuously gets smarter as it sees more environments (with privacy-preserving

mechanisms in place).

6. Risk Analysis & Mitigation

Building an ambitious platform like VulnAI comes with its own set of risks. We outline key project risks

and how we plan to mitigate them:

Accuracy and False Positives/Negatives: The AI components might initially mis-prioritize or

even hallucinate impacts (e.g. label a low risk issue as critical or vice versa). This could erode

user trust if not caught. Mitigation: Start with well-known, relatively deterministic inputs for AI

(like using CVSS and known exploit info as a baseline) and gradually augment with AI

suggestions. Always show the reasoning for a risk score (so users see why something was

rated high). Incorporate a feedback loop where users can correct the AI (mark false positive),

and use that feedback to adjust future scoring. In early deployments, we’ll likely keep a human

in the loop – e.g. security team reviews the AI-generated report before it goes to executives,

which is already a practice recommended in our use-case designs. Over time as confidence

increases, the AI outputs can be trusted more. We’ll also limit the AI’s scope where it’s less

reliable, focusing it on summarization and using strict code logic for anything safety-critical

(like calculating exposure).

→

Data Privacy and Security: The platform will handle sensitive information (details of

vulnerabilities, system configs, possibly even source code). A breach of this platform or

inadvertent data leak (say via an API or the AI model sending data to an external service) would

be very serious. Mitigation: Architecturally, we ensure that in on-prem mode no data leaves. For

the SaaS, we implement robust tenant isolation (separate data stores per customer, strict

access control). We will undergo security reviews and likely get certifications (ISO 27001, SOC2)

→

early to assure clients. Also, any use of third-party AI APIs will be optional – by default, all AI

processing can happen with local models to avoid data going to third parties. Internally, we’ll

apply our own product to itself – meaning we will threat model the VulnAI platform thoroughly

(maybe even build a threat model graph for it) and fix issues proactively. Using open-source

components means we have to watch for vulnerabilities in those; we’ll have a process (and

tools, including possibly VulnAI itself) to keep dependencies updated and patched.

Model Dependency & Evolution: The AI models we use could change (e.g. an API could become

paid or a new model requires different tuning). There’s also a risk that open-source models

might not perform well enough on specific security tasks. Mitigation: As per our principle, we

keep models interchangeable. We’ll maintain a suite of prompts and test cases so that if we

swap in a new model, we can quickly evaluate its outputs against expected results. If open

models lag behind, we have the option for our managed service to use commercial APIs for

better accuracy, while still keeping an acceptable baseline with offline models.

→

Scope Creep and Complexity: Vulnerability management is a huge domain. There’s a risk we try

to support too much too fast – covering every type of scan, every compliance framework – and

end up with a shallow, buggy product. Mitigation: We consciously focus on depth in selected

areas first (as noted, e.g. cloud and apps). We will use an agile approach, releasing incremental

features and getting real user feedback to guide what to do next. The open-source aspect helps

here: if the community finds our tool useful, they might contribute coverage for other areas (for

example, someone might add an IoT device scan parser). We’ll prioritize core functionality and

reliability over adding new checkboxes. The modular design means even if a certain connector

is not ready, it doesn’t break the whole platform.

→

Adoption Risk: Convincing organizations (especially large enterprises) to adopt a new platform

is non-trivial. They might be skeptical of AI “magic” or already invested in other solutions.

Mitigation: We aim to show concrete ROI through pilot projects. By providing an open-source

version, organizations can try it with minimal risk or cost. We also integrate with, rather than

replace, existing tools – this way we position VulnAI as an enhancer (the “brain” that makes

sense of their existing scanners), not something that forces rip-and-replace. Our value

proposition (save time, focus on true risk, improve communication) directly addresses pain

points that management cares about – we will gather data from pilots like “reduced mean time

to remediate by X% by using VulnAI’s prioritization” to build confidence. Another mitigation is

targeting security consultancies or MSSPs as users – they could use VulnAI to deliver better

reports to clients, becoming ambassadors for the product.

→

Competition: It’s likely that other companies are also looking to apply AI to vulnerability

management. Big players (Qualys, Tenable) might add similar AI features to their suites, and

startups are certainly emerging. Mitigation: Our open-core strategy and focus on knowledge

graphs differentiates us. We are not just slapping an AI on a scanner; we’re reimagining the data

model (graphs) and workflow (LETS pipeline). That’s a deeper change that is harder for

incumbents to replicate quickly, especially if we establish a community-driven standard. Also, by

being open-source and flexible, we can integrate with those big tools (e.g. use Tenable’s data

but still provide a better brain). If a company already has Qualys, they can still feed Qualys data

into VulnAI for the risk context – so we complement rather than directly fight at the start. Over

time, if our approach proves superior, we could become a preferred interface that even takes

over some functionality, but we don’t have to pick that fight immediately. We also will

emphasize vendor-neutral frameworks and maybe align with initiatives like OpenCVEM or

→

In summary, while there are many challenges, our mitigations revolve around building trust (transparent

design, open source), ensuring quality (incremental development, validation), and staying adaptive (both

in tech and strategy). By anticipating these risks, we improve our odds of delivering a successful

platform that users rely on for mission-critical risk decisions.

7. Business Case & Value Proposition

The rationale for investing in Project VulnAI is compelling from both a security outcome perspective and

a business opportunity perspective. We detail the value proposition for customers (security teams,

CISOs, developers) and the wider business case for making this a SaaS offering.

For Customers (Enterprises and Security Teams):

Dramatically Improved Risk Posture: By focusing on risk and context, VulnAI enables organizations

to fix the vulnerabilities that truly matter before they’re exploited. This can significantly reduce the

likelihood of breaches. For example, instead of patching 100 low-impact issues, a team might focus

on 5 critical ones that, if left unchecked, could cause millions in damage. In essence, the platform

helps prevent fire drills by dealing with the combustible material proactively. This is a shift from

reactive vulnerability chasing to proactive risk management. As one industry stat highlighted,

organizations that adopt risk-based vulnerability management reduce meaningful incidents

compared to those drowning in vuln counts. VulnAI provides that risk-based approach out of the box.

Efficiency and Cost Savings: Automation and AI-driven analysis cut down the manual effort

dramatically. Tasks like reading through scanner reports, correlating them, writing summaries, and

creating tickets – which might take a team dozens of hours per month – are handled by the platform

in minutes. This frees up scarce security personnel to focus on higher-level strategy and remediation

validation rather than grunt work. It also reduces burnout; dealing with an endless queue of

vulnerabilities is demoralizing, whereas having a clear, justified action plan is motivating. If an

enterprise can save even one security analyst’s worth of time, that’s easily \$100k+ yearly value in

salary alone. Moreover, faster prioritization means faster remediation, which lowers the window of

exposure (in turn avoiding potential incident costs that can be orders of magnitude higher).

Better Communication and Alignment: VulnAI’s ability to translate tech findings into business terms

bridges the gap between security teams and executives (or other stakeholders). CISOs can get

boardroom-ready reports at the push of a button, with AI tailoring the tone appropriately. This

improves confidence at the leadership level – security investments can be clearly justified by

showing how they reduce risk. Likewise, dev teams get actionable, developer-friendly insights (“fix

this line of code” or “upgrade this library”) instead of generic CVE blurbs. By aligning everyone on

what’s important, the platform helps in breaking down organizational silos. A CISO can walk into a

meeting with a live dashboard showing current risk, drill into any item, and demonstrate due

diligence to auditors or clients with evidence of a robust process (even mapping issues to

compliance controls for frameworks like ISO27001 or PCI). This level of streamlined reporting can be

a game-changer during audits or cyber insurance assessments.

Leverage of Latest Knowledge (Continuous Update): With the open knowledge graph and AI, the

platform effectively learns from each new vulnerability and incident. When a new critical CVE

standards (if any emerging for vulns and AI) to position ourselves as a thought leader rather

than just a product.

emerges (like the next Log4Shell), VulnAI could quickly cross-reference it to every system in the

graph, identify where it’s present, assess the risk of those instances (internet-facing? sensitive data?)

and advise accordingly – all faster than a human team could respond by manually querying different

tools. This “connect the dots quickly” capability means organizations stay ahead of threats. The

integration of threat intelligence and possibly community-shared data means users benefit from

collective knowledge. Essentially, subscribing to VulnAI (or using the open core) is like hiring an ultra-

fast research analyst who’s always up-to-date on the latest threats and knows your environment

intimately.

Developer Empowerment and Reduced Friction: By integrating with dev workflows and even

addressing non-security bugs, VulnAI presents itself as a helpful assistant rather than a hindrance.

This can improve DevSecOps culture: developers learn from AI explanations about why something is

a risk, not just that it is. Over time, this bakes security thinking into development. The platform might

also shorten the feedback loop – finding some vulnerabilities during development (IDE or PR checks)

instead of post-scan. That reduces the cost to fix (fixing during coding is cheaper than after

deployment). All of this contributes to a higher quality software with fewer production issues,

security or otherwise.

For the SaaS Business (Project VulnAI’s company and investors):

Large Addressable Market with High Willingness to Pay: Cybersecurity spending is at an all-time

high, and specifically, vulnerability management remains a budgeted line item for most mid-to-large

enterprises. With the explosion of cloud and software usage, the pain point is growing. A McKinsey

study noted over 70% of large enterprises are keen to invest in AI-powered security solutions. Early

signs from the market (e.g. startups in this space getting significant funding, or big firms adding AI

to their roadmap) validate that there is a ripe opportunity. If we capture even a small slice of the

enterprises that currently use legacy vulnerability scanners but need better management (or those

that rely on consultants for manual reports), that’s a multimillion-dollar opportunity.

Competitive Differentiation: Our approach combines unique selling points – the open-core model,

the knowledge graph foundation, and deep AI integration. This sets us apart from traditional players

like Qualys/Rapid7, which have largely incremental improvements, and also from niche startups that

might be doing AI without the graph context or without open source. We have a chance to establish a

new category of “AI-driven risk management platform” much like how Splunk once created “machine

data analysis” category. If successful, we could become the central platform that others integrate

with or extend. Also, being early in adopting this graph+AI approach (backed by years of Dinis’s

research) gives us a head start that is hard to replicate without similar expertise.

Revenue Streams: The SaaS offering can have tiered subscriptions (e.g. a free community tier for

small teams or open-source users, a standard tier for mid-size companies, and an enterprise tier with

on-prem and premium support). We can charge based on number of assets or volume of data

analyzed, which correlates with value provided. We can also offer consulting and integration

services – helping companies onboard the platform, customize ontologies, or integrate with their

peculiar legacy systems – which can be a significant revenue stream especially in early stages.

Furthermore, the data insights (fully respecting privacy) could lead to future products – e.g. an

anonymized industry benchmark: “see how your patch timing compares to peers” as an add-on

service for executives.

Operational and Development Efficiency: Using open source and serverless architecture doesn’t just

benefit customers; it also keeps our own costs manageable. We don’t need to maintain costly

infrastructure for each customer (especially if heavy compute can run in their environment or on

demand). And community contributions can accelerate development of features (essentially

outsourcing some R\&D to the open ecosystem). This means a potentially higher margin business

once established. Also, our reliance on commodity AI models means we avoid the massive cost of

training and maintaining a custom AI – we use existing infrastructure and focus on orchestration,

which is more sustainable.

Strategic Positioning and Expandability: Starting with vulnerability management is just the

beachhead. The core tech – knowledge graphs + AI pipeline – can extend to other cybersecurity

domains like compliance automation, incident response (imagine feeding incident data and using

the graph to find root causes), or even broader IT risk management. Our platform could evolve into a

general security decision support system. The business plan can envision expanding offerings (like

modules or separate products) using the same core. This provides growth potential beyond just VM.

Moreover, success in this space could make us an attractive acquisition target for larger

cybersecurity companies or cloud providers looking to enhance their AI capabilities (though our aim

would be to build a standalone success, it’s good to have options).

ROI Example: To make it concrete – consider a Fortune 1000 company with 100 applications, 1000

servers, etc., receiving ~5000 new vulnerability findings per month from various tools. With traditional

processes, maybe 20% get addressed in a timely way. With VulnAI, suppose we cut the time to prioritize

from weeks to real-time, and they address the top 5% that matter and consciously defer the rest with

documented rationale. The likely outcome is fewer incidents (say avoiding even one major incident a year

can save them millions in breach costs), and saved labor (each security engineer could manage twice the

coverage, or they can reassign some to other projects). From a pure cost perspective, if our platform

license costs, say, \$100k/year for them, but saves 2000 hours of manual work (\$150/hour loaded cost

= \$300k) and prevents a breach (\$M’s), the ROI is huge. We will capture these stories with early

customers to quantify value delivered.

Conclusion (Value Proposition): Project VulnAI offers a win-win. Customers get a cutting-edge tool that

reduces risk and toil, aligning security efforts with business needs. The organization behind VulnAI taps

into a growing market with a differentiated solution, leveraging community and AI to stay ahead. The

platform’s launch is timely – enterprises are actively seeking ways to harness AI for practical security

gains, and we are delivering exactly that in an accessible, explainable package. By crediting our roots in

open research (co-developed with ChatGPT and based on real-world CISO experience), we also build

credibility as thought leaders in this space.

In summary, VulnAI’s business case is strong: it addresses a critical need with innovative tech at the right

time, promising both improved security outcomes for users and a scalable, profitable SaaS venture for

stakeholders. With a solid technical foundation and a clear focus on risk-based management, Project

VulnAI has the potential to become an indispensable platform for cybersecurity teams worldwide,

fulfilling the long-held promise of truly effective vulnerability management.

