
LLM Workflows/Stateflow Service – Technical
Brief
Authored by Dinis Cruz and ChatGPT Deep Research

Introduction

The LLM Workflows/Stateflow Service is a proposed stateless web service for executing AI-driven
workflows with well-defined, deterministic steps. It acts as a state machine for orchestrating Large
Language Model (LLM) calls and other actions in a controlled sequence. Unlike “agentic” AI systems that
freely decide each action, this service uses a pre-defined flow (blueprint) to ensure predictability and
provenance. The goal is to harness the power of LLMs (for analysis or content generation) within strict
boundaries: the LLM can perform complex subtasks, but it never dictates the workflow’s overall path

. This design follows the “Blueprint First, Model Second” principle, decoupling high-level logic from the
probabilistic nature of LLMs . The result is an execution environment where every step is explicit and
auditable, yielding reliable behavior even in complex multi-step AI tasks.

Key collaborators: The creation of this service is a collaborative effort between human developers and
AI assistants (LLMs). Developers will define the workflow blueprints, implement the engine, and
integrate services, while advanced LLMs (such as ChatGPT) assist in brainstorming, research, and even
code generation. For example, this very document is co-authored by Dinis Cruz and ChatGPT, reflecting
the human-AI partnership in designing the system. By leveraging LLM support during development, the
team can explore design options and documentation rapidly, then validate and refine them with human
expertise. This collaboration ensures the final system design is both innovative and technically sound.

Design Principles and Goals

Deterministic Control Flow: All workflows are executed according to a fixed, predefined
sequence of steps (a stateflow). The LLM is not allowed to randomly alter the flow or insert
unforeseen steps. This contrasts with fully agentic systems where the next action is decided by
the model at runtime. By enforcing determinism, the service guarantees predictable and
repeatable executions. Recent research underscores the importance of this approach: using an
explicit blueprint and a deterministic engine yields verifiable and auditable processes, as
opposed to unpredictable agent behaviors . In a similar vein, frameworks like LangGraph
favor explicit state machines for multi-agent orchestration, resulting in workflows that are
“predictable and auditable” – easier to debug and trust in enterprise settings .

Stateless Execution: The service itself maintains no persistent state between steps. Each step in
a workflow is executed independently, given its input and the overall flow definition, and it
produces an output (and possibly a next-step decision). Any state needed (e.g. variables or
results passed from one step to another) is included in the input/output data rather than stored
in the server. This stateless design aligns well with serverless deployment and makes the system
highly scalable. It also simplifies reasoning about execution, since each invocation of the service
is pure (no hidden state from prior runs).

1

1

•

1

2

•

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://arxiv.org/html/2508.02721v1#:~:text=Agent%20framework,as%20parsing%20an%20error%20log
https://arxiv.org/html/2508.02721v1#:~:text=Agent%20framework,as%20parsing%20an%20error%20log
https://arxiv.org/html/2508.02721v1#:~:text=Agent%20framework,as%20parsing%20an%20error%20log
https://www.zenml.io/blog/langgraph-vs-autogen#:~:text=LangGraph%20is%20ideal%20for%20building,to%20debug%20and%20guarantee%20behavior

Workflow as Data (Blueprint): Workflows are defined declaratively as data structures (a
blueprint or flow definition) rather than hard-coded logic. An expert (developer) or an
automated design tool specifies the sequence of actions, conditional branches, and allowed
operations in a machine-readable format. The workflow blueprint can be represented in JSON or
a similar structured schema, akin to how one might describe an API contract in OpenAPI. This
blueprint is essentially a directed graph or state machine: each node represents a step (action to
perform) and edges define transitions to the next step. The service’s engine interprets the
blueprint to decide what to do at each step and where to go next. Crucially, the LLM is only
invoked within specific steps for bounded tasks – for example, to generate text or analyze data –
but never to choose the next step in the state machine . This ensures the flow’s path
remains under deterministic control of the blueprint.

Provenance and Auditability: Every action taken by the workflow (LLM call, API call, decision
branch, etc.) is logged and traceable. Because the sequence is predetermined (except for
conditional logic which is still explicitly defined), we can provide a complete audit trail of what
happened and why. This is critical in enterprise or safety-critical contexts where understanding
the decision process is required. The structured nature of the flows makes it easier to inspect
and verify correctness before execution, and to analyze outcomes after execution.

Limited LLM Scope (Safety): The use of LLMs within the workflow is intentionally constrained.
LLMs will be used for tasks like natural language processing, summarization, translation, or
analysis – not for making control decisions. By bounding the LLM’s role, we avoid the
unpredictability that comes if an LLM “agent” had free rein. Essentially, the LLM behaves as a
powerful subroutine under supervision. This mitigates risks of the LLM drifting off-task or
producing unintended actions. It also allows insertion of validation steps (for example, after an
LLM produces an output, the next step could validate that output against rules or schemas
before proceeding).

Budgets and Resource Controls: Each workflow (and even each actor or tool within the
workflow) can be assigned a budget – for example, a limit on the number of API calls, the
number of tokens processed by an LLM, or a time limit. These budgets are integrated into the
flow logic. If a component exceeds its budget, the workflow can take a predefined path (such as
aborting or invoking a fallback step). By designing budget constraints into the blueprint, we
ensure the system cannot accidentally run away in loops or incur unbounded costs. In our
scenario, for instance, the Persona service or LLM might only have a certain token budget; if
translating or answering a question would exceed that, the flow would stop or switch to an error
state. This built-in guardrail is another measure to keep executions safe and predictable.

Flexible Complexity: The system is meant to handle simple to very complex workflows. A simple
use-case might be a single-step call (e.g. "call this LLM with prompt X and return answer"). A
complex use-case could involve multiple agents, branching logic, loops (controlled by explicit
conditions), and tool integrations. The design should support both extremes. This implies the
blueprint language must be expressive enough for conditions, branching (if/else), parallel
execution (if needed), and looping (perhaps via recursive flows or explicit loop constructs) – all
while remaining human-comprehensible. The service should execute any such defined flow
reliably, since each part is under strict governance of the blueprint.

Integration with Knowledge Graphs (Future Scope): Although not the first priority, the vision
includes leveraging semantic knowledge graphs in conjunction with the flow engine. The idea
is that the workflow steps and their context could be informed by a knowledge graph that
contains relevant domain information or state. For example, a step might query a knowledge

•

1

•

•

•

•

•

2

https://arxiv.org/html/2508.02721v1#:~:text=Agent%20framework,as%20parsing%20an%20error%20log

graph for facts that an LLM then uses in its prompt. Or the flow blueprint itself could be stored/
versioned as a graph of nodes (steps) and edges (transitions), enabling visualization and analysis
of the workflow structure. By combining flows with semantic knowledge representations, we can
achieve more powerful reasoning while still keeping the execution controlled. This is an area of
ongoing research and will be explored as the service evolves.

Service Architecture and Components

The LLM Workflows/Stateflow Service architecture is composed of several key components that
together enable the definition and execution of these workflows:

Workflow Definition (Blueprint): At the core is the workflow blueprint, a complete
specification of the states and transitions for a given process. This can be a JSON document or
Python object (defined via dataclasses or Pydantic models) that lists all the steps in order, along
with any branching logic. Each Step in the blueprint typically contains:
An action identifier – e.g. "call_LLM" or "call_service:persona.translate" – which
tells the engine what to do.
Parameters/input for that action – e.g. the prompt to send to the LLM, or the data to send to an
API. Parameters might include references to outputs of previous steps (for example, step 3 can
use the result produced by step 2).
Result handling info – e.g. where to store the result of this step (in a context object or variable
map that gets passed along).
Transitions – rules for what the next step is. In the simplest case, each step names a single next
step. In more complex cases, a step may have multiple possible next steps depending on its
result (for example, a branching step could say: if evaluation score >= 8 go to step X, else go to step
Y). If a step is terminal, it can be marked as an End state.
Optional metadata like timeouts or retries for that step, if an action might fail and should be
retried.

The blueprint is analogous to a workflow script. The service includes a Blueprint Interpreter (or
engine) which reads this definition and drives execution accordingly. Because the blueprint is
declarative, we can inspect and validate it before running, and even visualize it as a flowchart.

Execution Engine: The engine is a stateless component that takes a workflow blueprint plus the
current state (inputs and context) and executes one step of the workflow. It can be implemented
as a FastAPI endpoint (for example, /execute_step) which accepts a JSON payload containing
the workflow definition (or a reference to it), the current step to execute, and any necessary
input data or context. The engine performs the action of that step and returns the result (and
the identifier of the next step to execute, if any). Important responsibilities of the engine include:
Action Dispatch: Based on the step’s action identifier, call the appropriate function or external
service. For example, if the action is call_LLM , the engine will invoke the configured LLM API
(such as an OpenAI or Anthropic model) with the given prompt and parameters. If the action is
persona.translate or persona.respond , the engine calls the Persona service endpoint. If

it’s a generic HTTP API call, the engine will make that HTTP request (possibly the blueprint could
contain the URL or a reference to a pre-registered service with credentials).
Budget Checking: Before executing an action, the engine checks the remaining budget for that
actor/service. This could be implemented by maintaining a transient budget counter in the
context that tracks tokens or calls. For instance, if the Persona service has 100 tokens budget
and translating the message is estimated to use 30, the engine verifies budget >= 30, deducts it,
then proceeds. If budget would be exceeded, the engine can skip to a special termination or
error step defined in the blueprint.

•

•

•

•

•

•

•

•

•

3

Result Handling: After performing the action, the engine takes the output and places it in the
workflow’s state (for example, storing it under a variable name). If the blueprint specifies post-
processing (like simple transformations) or validations (e.g. ensure the result fits an expected
format), those are done here as well.
Next Step Logic: The engine determines which state to execute next. In straightforward
sequences, the blueprint might indicate a next step explicitly. If the current step was a
branching/choice step or if the action outcome dictates the path, the engine evaluates the
condition and picks the appropriate next step. For example, an evaluator step might branch to
different follow-up steps depending on the score (high score leads to a “successful completion”
branch, low score leads to an “escalation” branch). If there is no next step (the step was marked
as an end), the workflow is complete and the engine returns the final result of the workflow.

Notably, the engine is agnostic to the overall workflow – it doesn’t keep a running memory of all
previous steps beyond what is carried in the input context. This makes it easy to scale or even to pause
and resume workflows by simply not calling the next step immediately. It is the responsibility of the
Orchestrator (described next) to drive the engine through the steps.

Workflow Orchestrator: Since the service executes one step at a time, we need an orchestrator
to manage multi-step workflows from start to finish. This could be a separate client application, a
calling service, or even a simple loop in a script that keeps invoking the engine until the workflow
ends. For example, suppose we have a workflow with steps A -> B -> C. The orchestrator would:
Call /execute_step for step A with initial input. Receive result and next step = B.
Call /execute_step for step B with result of A. Receive result and next step = C.
Call /execute_step for step C with result of B. Receive result and next step = none (end).
Collect final result.

The orchestrator could be implemented as part of the client using this service, or we could provide a
utility in the service that takes a whole blueprint and automatically steps through it. However, having
the orchestrator outside the core engine adds flexibility: workflows can be paused, inspected mid-run,
or even modified between steps if needed (for advanced use cases).

In a serverless deployment (e.g., AWS Lambda via OSBot-FastAPI-Serverless), the orchestrator might be
a state machine service (like AWS Step Functions itself or Azure Durable Functions) that triggers the next
lambda invocation. Alternatively, a simple loop in an API endpoint (if using a container or persistent
service) could also orchestrate the steps synchronously.

Integrated Services and Tools: The workflow steps can involve various external services:
An LLM Service: e.g., an API call to an OpenAI or a local model. The flow can specify which model
and prompt to use. The LLM service endpoint would need to be reachable by the workflow
engine and secured (API keys, etc.). The service may have multiple models (GPT-4, GPT-3.5, etc.)
and the blueprint could choose which one by an identifier.
The Persona Service: (at persona.qa.mgraph.ai as mentioned) which has two main
capabilities:

Persona Translation: take an input message and translate or rephrase it for a target
persona or in a target language (e.g., explain a technical incident in board-level terms, or
convert English to Portuguese, etc.).
Persona Response: given a prompt or question, respond as the persona (generating an
answer the persona would give). This service is itself likely powered by an LLM under the
hood, but from our workflow’s perspective it’s a black-box API that we call with certain
parameters. The workflow can include steps that call persona.translate or
persona.respond with the appropriate persona and message.

•

•

•

•
•
•
•

•
•

•

◦

◦

4

Evaluation Service: an AI or rule-based system that evaluates a given piece of content. In the
example scenario, this is used to rate how well a response was understood or how effective it
was. This could be another LLM prompt (e.g., asking an evaluator model to score the answer on
clarity), or a more deterministic function that checks for certain keywords, etc. We treat it as an
external call (perhaps another endpoint like evaluator.rate_response).

Other APIs/Tools: The system could integrate with any HTTP API or internal function. For
instance, steps could call a database, send an email, trigger a CI/CD pipeline, run a shell
command (if allowed), etc. These would be included by defining new action types in the blueprint
and teaching the engine how to execute them. The design is extensible; new action handlers can
be added to the engine plugin-style.

Budget Manager: As mentioned, budgets for each actor/service must be enforced. A simple
implementation is to include budget counters in the workflow context passed through steps. For
example, the context could have { "budget": {"persona": 1000, "llm": 1500,

"evaluator": 500} } indicating remaining token or API call counts. Each time the engine is
about to call one of these, it subtracts an estimated cost. If the cost is not known exactly (e.g.,
tokens to be consumed by an LLM call depends on output length), the engine can either make a
conservative guess or get the info after the call (some LLM APIs return token usage). If a budget
hits zero or goes negative, the engine can trigger a special transition (for example, go to a
“Budget Exceeded” fail state). The blueprint can define what to do in that case (maybe notify the
user, or just terminate). The Budget Manager could be just a piece of logic in the engine or a
separate helper module.

Logging & Monitoring: Every request to the engine and every action invocation should be
logged. This includes inputs, outputs, and any decision points. For debugging complex
workflows, it is invaluable to see a trace of steps. We can integrate this with the OSBot-FastAPI’s
event system (which already provides request/response tracking and can store events) . Logs
can be written to a database or a cloud logging service. We might also have a monitoring
dashboard that shows active workflows, their progress, and any errors. For long-running
workflows (if any), monitoring would show the current state and waiting transitions. Given the
stateless nature, most workflows will run quickly or be orchestrated externally, but monitoring is
still useful for analyzing results and performance. We will also capture metrics like time per step,
tokens used, etc., to help optimize the flows and LLM usage.

Security & Access Control: As an OWASP Security Bot project, security is important. The service
should authenticate and authorize requests (using API keys or tokens, as supported by OSBot-
FastAPI middleware). Only authorized systems or users should be able to submit a workflow
for execution or call the engine. Also, the actions allowed in a workflow might be gated: for
example, we might restrict certain flows from calling arbitrary URLs unless explicitly allowed, to
prevent misuse. Each integrated service (Persona, LLM, etc.) will have its own credentials (API
keys), which the engine must handle securely (likely stored in environment or a vault, not hard-
coded in the blueprint). The blueprint might reference a service by name and the engine knows
which credentials to apply.

In summary, the architecture separates the declaration of what to do (blueprint) from the execution of
how it’s done (engine and orchestrator), with clear interfaces to external AI services and strict control
logic enveloping any LLM calls. This design maximizes reliability and clarity, ensuring that even as we
automate complex tasks with AI, the process remains transparent and governable.

•

•

•

•

3

•

4

5

https://pypi.org/project/osbot-fast-api/#:~:text=A%20Type,AWS%20Lambda%20integration%20through%20Mangum
https://pypi.org/project/osbot-fast-api/#:~:text=%2A%20Type,%E2%86%94%20BaseModel%20%E2%86%94%20Dataclass%20conversions

Workflow Definition and Standards

Defining the workflow blueprint in a robust way is a critical aspect of this service. We want a format that
is expressive, standard-compliant (when possible), and easy for developers to author and
maintain. Given that our implementation language is Python (with OSBot-FastAPI and OSBot-FastAPI-
Serverless frameworks), we have a couple of choices for how to represent workflows:

Python Type-Safe Classes (Code as Blueprint): We can create Python classes (using OSBot’s
Type_Safe or Pydantic models) to represent the elements of a workflow – e.g., a Flow class
containing a list of Step objects, where each Step has fields like id , action ,
parameters , transitions , etc. Developers can then construct these classes in code or load

them from a JSON. OSBot-FastAPI will automatically handle conversion between these classes
and JSON schemas . This means we get strong typing and validation for free. For example, if a
step is missing a required field or has an invalid next step reference, the model validation can
catch it before execution. This approach treats the blueprint almost like writing a program (in
Python), which is then serialized to JSON when needed.

JSON/YAML Workflow Schema (Data as Blueprint): Alternatively, we define a pure JSON (or
YAML) schema for the workflow – a text-based format that could be authored by hand or
generated by tools. There are existing standards and schemas in the industry that we can draw
inspiration from:

BPMN 2.0: A long-standing standard for business process modeling (usually visual diagrams
stored in XML) . BPMN is very expressive (supports events, gateways, etc.), but it might be
overly complex for our needs and not JSON-friendly by default.
BPEL: An older XML-based language for web service orchestration . Also quite heavy and tied
to WS-* services.
AWS Step Functions (Amazon States Language): A JSON-based state machine definition used
in AWS Step Functions . This is a practical and widely used format. It represents workflows as
a set of states (Task, Choice, Parallel, etc.) with a StartAt and explicit Next transitions or
Choice branches. It’s quite suitable for our concept since it inherently models step-by-step

execution with choices. The downside is that it’s AWS-specific in some of its integration details,
but we could adopt the structure. For example, we’d have "Task" states for calling LLM or
Persona, and "Choice" states for branching on evaluation results, etc., all expressed in JSON.
Azure Logic Apps: Similar to Step Functions, uses JSON (and often designed via a visual editor)

. Also could be a reference, though tied to Azure connectors.
Workflow Description Languages (WDL/CWL): These are specialized languages for scientific
and data workflows . They emphasize reproducibility and usually model batch processing of
data (like DNA sequencing pipelines). They might be too domain-specific for our interactive use-
cases, but they show how to define steps, inputs, and outputs clearly.
Argo Workflows / Tekton: Kubernetes-native workflow engines using YAML . They often
focus on CI/CD pipelines and container tasks. The concept of defining DAGs of steps is similar,
though Argo’s YAML could be more low-level (each step is basically a container spec).
Custom DSLs: Many teams end up creating their own lightweight JSON/YAML schemas for
workflows . This is likely the approach we will take: design a JSON schema tailored to our AI
workflow needs, while borrowing ideas from the above standards for structure and best
practices. For instance, we might incorporate Step Function’s idea of states and transitions, but
simplify it, or include a field for natural language description like BPMN does, etc.

Given that we aim for a type-safe and easily maintainable solution, our plan is to define a JSON-based
schema for the workflow and also represent it with Python classes for convenience. We can start from

1.

3

2.

3.
5

4. 5

5.
6

6.
7

7.
8

8. 9

9.
10

6

https://pypi.org/project/osbot-fast-api/#:~:text=A%20Type,AWS%20Lambda%20integration%20through%20Mangum
https://github.com/woodyhayday/FlowSpec#:~:text=%2A%20BPMN%202.0%3A%20An%20industry,both%20visual%20and%20code%20views
https://github.com/woodyhayday/FlowSpec#:~:text=%2A%20BPMN%202.0%3A%20An%20industry,both%20visual%20and%20code%20views
https://github.com/woodyhayday/FlowSpec#:~:text=,workflow%20definition%20tool%20integrated%20with
https://github.com/woodyhayday/FlowSpec#:~:text=,both%20visual%20and%20code%20views
https://github.com/woodyhayday/FlowSpec#:~:text=,and%20scientific%20computing%2C%20emphasizing%20reproducibility
https://github.com/woodyhayday/FlowSpec#:~:text=,excel%20in%20containerized%20CI%2FCD%20pipelines
https://github.com/woodyhayday/FlowSpec#:~:text=,to%20their%20specific%20automation%20needs

scratch or use a nascent standard like FlowSpec. FlowSpec is an open initiative to create a standardized
JSON schema for AI automation workflows . It recognizes that many workflow tools share a flow-
chart backbone, and it attempts to unify this in a portable way. In FlowSpec, a workflow is defined by a
title, description, a list of steps, and transitions between steps . Each step has fields for what action
to execute, its inputs, expected outputs, and what the next step(s) are depending on outcomes. It even
allows global default transitions (like what to do on any failure) . FlowSpec also enumerates
existing workflow standards (as we did above) to validate the approach of a common schema .

After researching these options, our recommendation is to adopt a JSON state machine schema
inspired by AWS Step Functions and FlowSpec. This gives us a known structure (states, next, choice, etc.)
but we will customize it for our needs (for example, integrate the notion of budget and our specific
action types). We will keep the schema human-readable and not too verbose. For instance, a simple flow
with two steps might look like:

{

"workflowName": "Simple Q&A",

"startAt": "AskQuestion",

"states": {

"AskQuestion": {

"type": "Task",

"action": "call_LLM",

"parameters": {

"prompt": "Answer the user's question: {user_question}"

},

"resultVar": "answer",

"next": "EvaluateAnswer"

},

"EvaluateAnswer": {

"type": "Task",

"action": "evaluator.rate_response",

"parameters": {

"response": "{answer}"

},

"resultVar": "score",

"end": true

}

}

}

In this pseudo-JSON: - startAt specifies the entry step. - We have two states: one calls an LLM to get
an answer, the next calls an evaluator to score that answer, then ends. - We use placeholders like
{user_question} and {answer} to indicate passing data between steps (the engine would replace

those at runtime with actual values from context). - This format is quite similar to Amazon States
Language (each state has a Type and either a Next or End) , but with an action field
that is our custom addition to specify what the Task does (since we are not tying directly into AWS
Lambda ARNs as AWS does).

We will formalize such a schema and provide a JSON Schema definition for it (so it can be validated). The
use of Python with OSBot-FastAPI means we can also create corresponding classes. For example, a
TaskState class and a ChoiceState class that inherit from a base State class, etc., enabling

11

11

12 13

13

14 15

16

7

https://github.com/woodyhayday/FlowSpec#:~:text=A%20lightweight%20standardized%20JSON%20schema,step%20workflows
https://github.com/woodyhayday/FlowSpec#:~:text=A%20lightweight%20standardized%20JSON%20schema,step%20workflows
https://github.com/woodyhayday/FlowSpec#:~:text=,
https://github.com/woodyhayday/FlowSpec#:~:text=%2A%20BPMN%202.0%3A%20An%20industry,intensive%20pipelines%20and
https://github.com/woodyhayday/FlowSpec#:~:text=%2A%20BPMN%202.0%3A%20An%20industry,intensive%20pipelines%20and
https://states-language.net/#:~:text=%7B%20,1%3A123456789012%3Afunction%3AHelloWorld%22%2C%20%22End%22%3A%20true
https://states-language.net/#:~:text=When%20this%20state%20machine%20is,or%20a%20runtime%20error%20occurs
https://states-language.net/#:~:text=,true%20%7D%20%7D

developers to construct workflows in Python fluidly. The OSBot-Fast-API toolkit will assist by ensuring
these classes convert to Pydantic models easily, preserving the strong types . This approach satisfies
our need for a clear contract for workflows, while leveraging existing best practices from industry
standards .

To summarize, the workflow definition will likely be expressed as JSON but with first-class support in
Python. It will incorporate ideas from state machine standards (like having explicit states, transitions,
start/end, etc.) and will be designed to be readable, easy to modify, and rigorous. By doing this, we
make it easier for developers to create new workflows or adjust existing ones, and possibly even enable
LLM-assisted workflow authoring in the future – for instance, an LLM could take a high-level description
and output a draft JSON workflow, which a developer then reviews and fine-tunes. The use of a standard
schema also opens the door to visualization tools or workflow editors down the line.

Example Workflow: Persona-Based Communication and
Evaluation

To illustrate how the stateflow service works, let's walk through a detailed example workflow. This
scenario involves translating and conveying a critical message between two types of personas in an
organization, and evaluating the communication’s effectiveness. We will use the previously described
actors: - Actor A: The originator of the message (could be a human user or an automated alert). In our
scenario, the message is: "A ransomware attack has hit Division X, which will impact the P&L (profit and loss)
for this quarter." - Actor B: The Persona Service, which can assume different personas. We will use it in
two modes: - Translator mode: to rephrase a message for a target persona’s understanding. - Responder
mode: to generate a reply as if coming from a persona. - Actor C: The Evaluator service, which will judge
the quality of responses (e.g., does the response answer the question clearly, does the target persona
understand the message, etc.).

The organizational context is that Board Members care about financial terms like P&L but might not
understand technical cybersecurity jargon, whereas CISOs (Chief Information Security Officers)
understand ransomware but might not grasp business impact jargon. Our message contains both
technical (ransomware) and financial (P&L) terms, so it’s challenging for either persona to fully
understand without translation.

We will construct a workflow that explores different communication paths:

1. Direct Communication to CISO (No Translation):
Actor A sends the original message directly to a CISO persona (via Actor B’s responder mode acting as a
CISO). The flow steps might be: - Step 1: persona.respond as CISO with input = "Ransomware attack
on Division X will impact P&L this quarter."
→ (Actor B generates a response as it thinks a CISO would reply. This CISO likely understands the
ransomware part but may be confused or less concerned about P&L specifics. The response might say
something focusing on cybersecurity mitigation but not address financial impact fully.) - Step 2:
evaluator.rate_response on the CISO’s reply, with criteria like completeness, clarity,

appropriateness for the question.
→ (Actor C returns a score or feedback. We expect this might be a mediocre score if the CISO persona
missed the financial aspect.) - Step 3: End. (We record the score and perhaps the content of the CISO’s
answer.)

Expected outcome: The CISO’s answer might mention technical steps (e.g., “We are investigating the
ransomware attack on Division X and working to contain it.”) but not translate that into business terms.

3

13 17

8

https://pypi.org/project/osbot-fast-api/#:~:text=A%20Type,AWS%20Lambda%20integration%20through%20Mangum
https://github.com/woodyhayday/FlowSpec#:~:text=%2A%20BPMN%202.0%3A%20An%20industry,intensive%20pipelines%20and
https://github.com/woodyhayday/FlowSpec#:~:text=,to%20their%20specific%20automation%20needs

The evaluator might note that the board (who cares about P&L) would not get a full picture from this
answer. The score could be low or moderate.

2. Direct Communication to Board Member (No Translation):
Actor A sends the same message directly to a Board Member persona (Actor B acting as a board
member): - Step 1: persona.respond as BoardMember with input = "Ransomware attack on Division
X will impact P&L this quarter."
→ (Actor B generates a response a board member might give. The board member persona might latch
onto the P&L impact but be unsure about the technical details, possibly responding with something like
“How severe is the ransomware attack and what are the projected losses?”) - Step 2:
evaluator.rate_response on the Board Member’s reply.

→ (We expect the board member’s answer might not be directly useful because the board persona
might actually ask questions or express confusion about the ransomware aspect. The evaluator likely
scores this low in terms of addressing the problem, since the board member persona didn’t provide a
solution or clear action.) - End.

This path shows how a mismatched communication (technical message to non-technical persona) might
fail. The board member didn’t provide a satisfying answer because they themselves didn’t fully
understand the technical side. The evaluator would likely flag that the communication was ineffective.

3. Translated Communication to CISO:
Now we improve the communication. Actor A’s original message will first be translated to the CISO’s
"language" (i.e., reframed in cybersecurity terms), then delivered to the CISO persona, and evaluated: -
Step 1: persona.translate target=CISO, input = "Ransomware attack on Division X will impact
P&L..."
→ (Actor B returns a translated message that a CISO would immediately grasp. For instance, it might
elaborate the technical threat and downplay financial jargon: “Division X has been hit by ransomware,
affecting operations; this could have a significant business impact this quarter.”) - Step 2:
persona.respond as CISO with input = translated message from Step 1.

→ (Now, receiving a message phrased in his context, the CISO persona can respond more appropriately.
The answer might be like: “Understood. We have isolated the affected systems and are initiating incident
response. We estimate recovery in 48 hours. Financial impact is being assessed in collaboration with finance.”
This is a more complete answer covering both tech and acknowledging financial impact, because the
question was framed in terms the CISO cares about.) - Step 3: evaluator.rate_response on the
CISO’s new reply.
→ (Actor C would likely give a higher score here, since the response is clear, addresses the issue, and
bridges to business impact. The evaluator might note that the communication was effective for the
target audience.) - End.

We expect this translated workflow to yield a good outcome: the CISO persona understood the question
after translation and responded in a way that likely satisfies a board or oversight evaluator.

4. Translated Communication to Board Member:
Similarly, translate the message for a Board Member, then get a response: - Step 1:
persona.translate target=BoardMember, input = original message.

→ (This might produce something like: “We estimate a hit to this quarter’s profits due to a cyber incident
(ransomware in Division X).” Essentially explaining ransomware impact in terms a board cares about,
possibly avoiding jargon.) - Step 2: persona.respond as BoardMember with input = translated
message.
→ (Now the board persona, fully aware of the financial framing, might respond appropriately, e.g.:

9

“Understood. Ensure all necessary resources are allocated to IT to resolve this quickly. Let’s prepare a
statement for stakeholders about the financial impact.”) - Step 3: evaluator.rate_response on this
reply.
→ (Likely another high score – the board member persona’s answer is on point when the question was
phrased in their terms.) - End.

This shows that with proper translation, even a non-technical persona can engage effectively.

5. Back-and-Forth Dialogue (CISO ⟷ Board, Mediated by Translations):
We can extend the scenario to simulate an interactive dialogue between the CISO and Board Member
personas. The idea is to have multiple turns: - First, the CISO receives a translated question (as in #3)
and responds as CISO. - Then take the CISO’s response, translate it for the Board, get a Board persona
reply. - Then translate that reply back to CISO’s terms, get CISO’s next response. - Continue this
exchange for a few iterations or until a budget limit is reached (to prevent infinite loops).

In the workflow blueprint, this could be represented by a loop or recursive transitions. For example: -
Step 1: persona.translate to CISO (original message) -> output ciso_msg. - Step 2:
persona.respond as CISO (ciso_msg) -> output ciso_reply. - Step 3: persona.translate to Board

(ciso_reply) -> output board_msg. - Step 4: persona.respond as Board (board_msg) -> output
board_reply. - Step 5: Loop condition: If board_reply or some context indicates conversation should
continue AND budgets remain, go back to Step 1 (or a specific step) with board_reply now serving as
the "original message" (Actor A’s input) for the next round, targeting CISO again. - If loop ends (either a
set number of rounds reached or budget exhausted), proceed to evaluation or finalization: - Step 6:
evaluator.rate_response on the final response or on the overall dialogue quality. - End.

This looping construct is explicitly controlled. The blueprint would contain a Choice or condition check
after Step 4 to decide whether to loop or exit. The budget for each persona ensures that, say, we don’t
allow more than N exchanges or Y tokens. For instance, we might give each persona service 3 calls
budget. Each persona.respond call uses 1. So at most 3 rounds of responses per persona can
happen (which is 3 CISO replies and 3 Board replies, for a total of 3 cycles) before the budget prevents
further calls.

During this back-and-forth, each translation ensures both parties understand each other’s messages in
their own context. The Evaluator at the end might evaluate the overall success of the communication.
Perhaps it looks at the final outcome: did they reach a mutual understanding or plan? We could even
have the evaluator step after each reply, storing intermediate scores, but in practice it might suffice to
evaluate at the end or only log the conversation.

This complex example demonstrates the power of the workflow approach: - We can coordinate multiple
AI calls (translations, persona responses, evaluations) in a sequence that achieves a larger goal
(effective communication). - Because it’s all in a defined flow, we avoid chaos: e.g., the Board and CISO
personas will not talk over each other or go off on tangents; they only respond when prompted by the
workflow. - If something fails (say one of the steps returns an error or empty response), we could have
failure paths defined. For example, if persona.respond fails due to no available LLM, the blueprint
could go to a step that sends a default apology message or logs the failure. - The budget prevents
infinite loops or runaway costs, which is something ad-hoc agent loops might suffer from.

In summary, this Persona Communication workflow shows a realistic use-case where deterministic
orchestration of LLM-powered services adds significant value. It ensures that two different
knowledge domains (technical vs business) can interact via AI intermediaries in a structured manner.

10

The stateflow service makes it feasible to design such an interaction as a series of controlled steps,
rather than leaving the entire conversation flow to an unpredictable AI agent. Each step’s outcome is
evaluated and can trigger specific next steps, which is exactly the kind of fine-grained control we need
for enterprise applications.

Additional Workflow Examples

Beyond the persona translation scenario, the LLM Workflows service can support a wide range of other
workflows. Here are a few example use-cases to demonstrate its versatility:

Simple LLM Q&A Workflow: ("Single-step answer") – The user provides a query, and the workflow
simply calls an LLM to get an answer and returns it. This is essentially a one-step workflow (plus
maybe an evaluator or format step). While trivial, it shows how even a simple LLM invocation can
be wrapped in the workflow for consistency (logging, budgeting, etc.). For instance, a question-
answering bot could be just a workflow with one Task: call_LLM (with a certain prompt
structure) and then End.

Knowledge Base Retrieval and Answering: ("Tool-augmented query") – A workflow can integrate
a search or database lookup before calling the LLM. Steps might be: (1) take a user question, (2)
use a custom action call_web_search or query_knowledge_graph to retrieve relevant
info, (3) feed the results into an call_LLM step that formulates an answer using those results,
(4) maybe an evaluator step to check confidence or filter out any disallowed content. This
deterministic sequence ensures the LLM’s answer is grounded in retrieved data (addressing
factuality), and each part is controlled (for example, if the search returns nothing, we could have
a conditional branch to skip the LLM call and respond with “no data found”).

Automated Code Assistant Workflow: – Consider a developer asking for code assistance. The
workflow could involve multiple specialized steps: (1) call_LLM with a "planner" prompt that
breaks down the request (e.g., “write a function to do X”) into tasks, (2) loop through sub-tasks
where for each task we call either a coding LLM to generate code or a testing tool to verify the
code, (3) integrate results, (4) evaluate final code. For example, the first LLM might produce a
pseudocode or list of steps, the workflow then calls a code-generation model to implement each
step, then calls a compilation or test action to check it, if a test fails perhaps branch to a
debugging LLM step, etc. Using a workflow ensures each step (planning, coding, testing, fixing)
is done in order and under budget. This is much safer than an autonomous coding agent that
might go into an infinite loop or execute code unsafely – our workflow can explicitly restrict what
happens (like only allow running tests in a sandbox, etc.).

Content Moderation Pipeline: – An enterprise might use a workflow to filter and respond to
user-generated content. For example: (1) moderation_model step (could be an LLM or a
dedicated model) to classify a piece of text (is it hate speech, spam, etc.?), (2) a choice state
that branches: if content is OK, proceed to next step, if not OK, go to a rejection message step or
escalation, (3) maybe an auto-response step that uses an LLM to draft a polite reply or
explanation, (4) an approve step where either automatically send the reply or require a human
approval (this could be an integration point where the workflow pauses until a human intervenes
– possible by having the orchestrator not call the next step until a signal). This kind of workflow
could automate moderation while keeping humans in the loop for tough cases, all defined by
policy in the blueprint.

•

•

•

•

11

Incident Response Workflow: – In a cybersecurity context (relevant to OWASP), imagine a
workflow triggered by a security alert. Steps could be: (1) parse the alert details (maybe using
regex or an LLM to summarize), (2) choice to categorize severity, (3) if severe, call a script or
API to isolate affected systems, (4) call LLM to draft a notification email to the IT team or
management, (5) log the incident to a database. Each of these is a deterministic step. The LLM is
used in a constrained way (only to generate the email text), while decisions like "if severe then
isolate systems" are hard-coded in the flow logic (not left to the AI). This ensures that important
actions (like isolating systems) happen exactly when they should according to a predefined
protocol, but we still benefit from AI in parsing and communicating information.

Multi-Language Customer Support: – A customer writes in with a query in language X. The
workflow: (1) detect language (maybe a small model or library call), (2) if not English,
translate to English via an LLM or translation API, (3) use an LLM to draft an answer in

English, referencing a support knowledge base if needed, (4) translate the answer back to the
customer’s language, (5) send the reply via an API. This workflow uses two LLM calls (one to
answer, and possibly the same or another to translate) and ensures the final answer is in the
customer’s language. By orchestrating it, we can ensure translation happens both ways and
include fallback steps (if translation fails, perhaps route to a human agent). It’s a controlled
agent that can autonomously handle many support tickets in multiple languages without ever
deviating from the defined process.

These examples scratch the surface. Essentially, any time we want an LLM or AI-driven process with
multiple steps and we care about controlling those steps, this service can help. It provides the skeleton
to plug in various AI and non-AI functions into a flowchart of actions.

By keeping the workflows declarative and using this service, organizations can codify complex
procedures that involve AI into a form that’s transparent, testable, and tunable. Need to change the
persona or the prompt? Just update the blueprint. Want to add a step to log to a new database? Add it
to the blueprint. Because the execution is isolated per step, these modifications won’t affect other steps’
correctness. This modularity and clarity is much harder to achieve if one tries to hard-code logic
intermingled with LLM prompts in a single blob. Our service enforces good separation of concerns.

Implementation Considerations (Python & OSBot Framework)

The service will be implemented in Python 3.11+ (per OSBot-Fast-API requirements) using the
OSBot-Fast-API library and its serverless extension. Here we outline how we leverage these
technologies and other implementation details:

OSBot-Fast-API for Type Safety: OSBot-Fast-API provides a strong type-safe layer on top of
FastAPI . We will define the data models for our workflow blueprint (and related requests/
responses) as classes using OSBot’s Type_Safe or Pydantic. This ensures that when a
workflow JSON is received, it’s automatically validated against our schema. It also makes it easy
to return structured responses. For instance, the /execute_step endpoint can be defined to
accept a WorkflowStepExecutionRequest object (containing the blueprint or reference and
current step data) and return a WorkflowStepResult object. OSBot-Fast-API will handle
converting those to JSON for us, and we can be confident in the structure. Strong typing will
catch mistakes early – e.g., if a transition refers to a step that doesn’t exist, we can detect that
when loading the workflow.

•

•

18

•
3

12

https://pypi.org/project/osbot-fast-api/#:~:text=,18
https://pypi.org/project/osbot-fast-api/#:~:text=A%20Type,AWS%20Lambda%20integration%20through%20Mangum

Serverless Deployment: OSBot-Fast-API-Serverless enables deploying the FastAPI app to AWS
Lambda easily. Our service, being stateless and lightweight in memory (each step execution is
quick), is a good candidate for serverless. We could deploy the entire service as a Lambda behind
an API Gateway. Each step execution call would be a separate invocation (which is fine given
statelessness). The benefits: scaling automatically with load and zero server maintenance. We do
need to be mindful of cold start times (Python Lambdas can have a few seconds cold start; using
smaller models or warming mechanisms might be considered if needed). Also, token-based LLM
calls can be slow (hundreds of milliseconds to seconds), but those are external API waits; the
Lambda timeout should be set sufficiently high to allow an LLM call to complete (perhaps 30
seconds or more for large prompts). For now, we focus on functionality, and we have the
flexibility to also run the service in a container or on a VM if needed (FastAPI is versatile).

Integration of LLM APIs: We will integrate with LLM providers via their Python SDKs or HTTP
APIs. Likely, OpenAI’s API (for GPT-4 or others) will be used initially (assuming we have keys).
Calls to these will happen inside the engine’s action dispatch. We must handle errors (network
issues, rate limits) gracefully – possibly by catching exceptions and either retrying (with backoff)
or moving to a failure state. We should also use streaming responses only if necessary;
otherwise synchronous calls returning the full output are simpler. For local LLMs or alternative
providers, we can abstract the LLM call behind a common interface so that switching out is easy
(for example, have a LLMService class with a method generate(model, prompt) that can
call OpenAI, or HuggingFace pipeline, etc., based on configuration).

Testing Workflows: Because of the deterministic nature, we can unit test workflows by
simulating the orchestrator. For a given blueprint, we can run the engine step by step and assert
the final outcome or intermediate states. We can also create dummy action handlers for tests
(e.g., instead of calling the real LLM API, use a stub that returns a fixed string or uses a local
small model). This way, we can verify logic (like branching) without external dependencies.
OSBot-Fast-API’s testing utilities (like the built-in test server) will help in writing these tests.
Each workflow example can have an automated test case that ensures it runs to completion and
yields expected evaluator scores, etc., which is important for continuous integration.

Performance and Caching: Calling LLMs is the slowest part. We might implement caching at the
step level. For example, if the same persona.translate is called with the exact same input
frequently, we could cache the result to avoid redundant API calls. This could be done in-memory
(for a single lambda invocation sequence) or even persisted (like a small Redis or DynamoDB
cache keyed by input). However, caching needs to be designed carefully (e.g., LLM outputs might
not be identical every time unless using deterministic prompts). Perhaps more straightforward is
to avoid duplicate calls in the same workflow execution – since a single workflow might reuse a
result anyway via variables.

Choosing Standards Libraries: For state machine logic within Python, we might use or draw
inspiration from libraries like transitions (a Python state machine library) or others, but
given our custom requirements, we will likely implement the transition handling ourselves. The
logic is not too complex given a proper data structure for the blueprint.

Error Handling and Recovery: If a step errors out (throws an exception, or returns a response
indicating failure), the engine should catch that and either:

Move to a predefined error state if the blueprint defined one (like how AWS Step Functions has a
Catch mechanism).

•

•

•

4

•

•

•

•

13

https://pypi.org/project/osbot-fast-api/#:~:text=%2A%20Type,%E2%86%94%20BaseModel%20%E2%86%94%20Dataclass%20conversions

Or return an error back to the orchestrator. Since orchestrator is external, it's probably better to
handle it within the workflow. We can allow steps to have a on_error: <stepId> field. This
way, e.g., if an LLM call fails, we go to a specific step (maybe an apology message, or a cleanup).
If no on_error is specified, the engine can return an error code and the whole workflow aborts.
This aspect should be defined in our schema for completeness.

Logging the error is important regardless, for debugging.

Collaboration and Iteration: As development proceeds, the team (human developers) will
refine the blueprint schema and engine logic, often with the assistance of LLMs for ideas or
troubleshooting. This synergy will continue as we implement new features. For instance, if we
want to introduce a new kind of step (say, a Parallel step to do two things concurrently), we
might consult resources or have an LLM suggest how to implement thread pools or async
patterns in FastAPI. However, all changes will be reviewed and tested by developers to ensure
they meet the determinism and security criteria.

Documentation and Accessibility: We will document the schema and usage of the service
thoroughly (potentially even auto-generating part of the docs from the schema, similar to how
OpenAPI does for APIs). Since Dinis Cruz and the team are building this in the open (likely on
GitHub), the documentation will credit the contributions of both the developers and the AI
(ChatGPT) that helped along the way. This technical brief itself can serve as a living document to
guide implementation, and as we integrate feedback and real-world testing, the design may be
adjusted. The flexibility of our approach (thanks to Python and JSON) means we can iterate
quickly.

In conclusion, the LLM Workflows/Stateflow Service is a cutting-edge approach to making LLM-based
systems more robust, transparent, and controllable. By blending established workflow orchestration
concepts with the latest AI capabilities, and implementing it with modern Python frameworks, we aim to
create a service that developers and AI systems can collaboratively use and improve. It will empower
the creation of AI-driven applications that have the creativity of LLMs and the reliability of traditional
software – a combination that is increasingly essential in high-stakes applications . With this
foundation, we anticipate a new class of solutions where humans specify the roadmap (workflow) and AI
fills in the details (content), all under a structure that ensures safety and effectiveness.

Blueprint First, Model Second: A Framework for Deterministic LLM Workflow
https://arxiv.org/html/2508.02721v1

LangGraph vs AutoGen: How are These LLM Workflow Orchestration Platforms Different? - ZenML
Blog
https://www.zenml.io/blog/langgraph-vs-autogen

osbot-fast-api · PyPI
https://pypi.org/project/osbot-fast-api/

GitHub - woodyhayday/FlowSpec: FlowSpec: Automation Workflow
Schema - A lightweight JSON schema for defining automations and multi-step workflows. Designed for
AI Automation Workflows
https://github.com/woodyhayday/FlowSpec

Amazon States Language
https://states-language.net/

•

•

•

•

19 20

1 19 20

2

3 4 18

5 6 7 8 9 10 11 12 13 17

14 15 16

14

https://arxiv.org/html/2508.02721v1#:~:text=process,demonstrate%20that%20the%20Source%20Code
https://arxiv.org/html/2508.02721v1#:~:text=Foundation%20Model%20is%20thus%20strategically,agents%20in%20handling%20OOM%20errors
https://arxiv.org/html/2508.02721v1#:~:text=Agent%20framework,as%20parsing%20an%20error%20log
https://arxiv.org/html/2508.02721v1#:~:text=process,demonstrate%20that%20the%20Source%20Code
https://arxiv.org/html/2508.02721v1#:~:text=Foundation%20Model%20is%20thus%20strategically,agents%20in%20handling%20OOM%20errors
https://arxiv.org/html/2508.02721v1
https://www.zenml.io/blog/langgraph-vs-autogen#:~:text=LangGraph%20is%20ideal%20for%20building,to%20debug%20and%20guarantee%20behavior
https://www.zenml.io/blog/langgraph-vs-autogen
https://pypi.org/project/osbot-fast-api/#:~:text=A%20Type,AWS%20Lambda%20integration%20through%20Mangum
https://pypi.org/project/osbot-fast-api/#:~:text=%2A%20Type,%E2%86%94%20BaseModel%20%E2%86%94%20Dataclass%20conversions
https://pypi.org/project/osbot-fast-api/#:~:text=,18
https://pypi.org/project/osbot-fast-api/
https://github.com/woodyhayday/FlowSpec#:~:text=%2A%20BPMN%202.0%3A%20An%20industry,both%20visual%20and%20code%20views
https://github.com/woodyhayday/FlowSpec#:~:text=,workflow%20definition%20tool%20integrated%20with
https://github.com/woodyhayday/FlowSpec#:~:text=,both%20visual%20and%20code%20views
https://github.com/woodyhayday/FlowSpec#:~:text=,and%20scientific%20computing%2C%20emphasizing%20reproducibility
https://github.com/woodyhayday/FlowSpec#:~:text=,excel%20in%20containerized%20CI%2FCD%20pipelines
https://github.com/woodyhayday/FlowSpec#:~:text=,to%20their%20specific%20automation%20needs
https://github.com/woodyhayday/FlowSpec#:~:text=A%20lightweight%20standardized%20JSON%20schema,step%20workflows
https://github.com/woodyhayday/FlowSpec#:~:text=,
https://github.com/woodyhayday/FlowSpec#:~:text=%2A%20BPMN%202.0%3A%20An%20industry,intensive%20pipelines%20and
https://github.com/woodyhayday/FlowSpec#:~:text=,to%20their%20specific%20automation%20needs
https://github.com/woodyhayday/FlowSpec
https://states-language.net/#:~:text=%7B%20,1%3A123456789012%3Afunction%3AHelloWorld%22%2C%20%22End%22%3A%20true
https://states-language.net/#:~:text=When%20this%20state%20machine%20is,or%20a%20runtime%20error%20occurs
https://states-language.net/#:~:text=,true%20%7D%20%7D
https://states-language.net/

	LLM Workflows/Stateflow Service – Technical Brief
	Introduction
	Design Principles and Goals
	Service Architecture and Components
	Workflow Definition and Standards
	Example Workflow: Persona-Based Communication and Evaluation
	Additional Workflow Examples
	Implementation Considerations (Python & OSBot Framework)

