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Introduction

The  LLM Workflows/Stateflow Service is  a  proposed stateless web service for  executing AI-driven
workflows with well-defined, deterministic steps. It acts as a  state machine for orchestrating Large
Language Model (LLM) calls and other actions in a controlled sequence. Unlike “agentic” AI systems that
freely decide each action, this service uses a pre-defined flow (blueprint) to ensure predictability and
provenance. The goal is to harness the power of LLMs (for analysis or content generation) within strict
boundaries: the LLM can perform complex subtasks, but it  never dictates the workflow’s overall path

. This design follows the “Blueprint First, Model Second” principle, decoupling high-level logic from the
probabilistic nature of LLMs . The result is an execution environment where every step is explicit and
auditable, yielding reliable behavior even in complex multi-step AI tasks.

Key collaborators: The creation of this service is a collaborative effort between human developers and
AI  assistants  (LLMs).  Developers  will  define  the  workflow  blueprints,  implement  the  engine,  and
integrate services, while advanced LLMs (such as ChatGPT) assist in brainstorming, research, and even
code generation. For example, this very document is co-authored by Dinis Cruz and ChatGPT, reflecting
the human-AI partnership in designing the system. By leveraging LLM support during development, the
team can explore design options and documentation rapidly, then validate and refine them with human
expertise. This collaboration ensures the final system design is both innovative and technically sound.

Design Principles and Goals

Deterministic  Control  Flow: All  workflows  are  executed  according  to  a  fixed,  predefined
sequence of  steps (a  stateflow).  The LLM is  not  allowed to randomly alter  the flow or  insert
unforeseen steps. This contrasts with fully agentic systems where the next action is decided by
the  model  at  runtime.  By  enforcing  determinism,  the  service  guarantees  predictable  and
repeatable executions. Recent research underscores the importance of this approach: using an
explicit  blueprint  and  a  deterministic  engine  yields  verifiable  and  auditable  processes,  as
opposed to unpredictable agent behaviors .  In a similar  vein,  frameworks like LangGraph
favor  explicit  state  machines  for  multi-agent  orchestration,  resulting  in  workflows  that  are
“predictable and auditable” – easier to debug and trust in enterprise settings .

Stateless Execution: The service itself maintains no persistent state between steps. Each step in
a  workflow is  executed independently,  given its  input  and the overall  flow definition,  and it
produces  an  output  (and possibly  a  next-step  decision).  Any  state  needed (e.g.  variables  or
results passed from one step to another) is included in the input/output data rather than stored
in the server. This stateless design aligns well with serverless deployment and makes the system
highly scalable. It also simplifies reasoning about execution, since each invocation of the service
is pure (no hidden state from prior runs).
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Workflow  as  Data  (Blueprint): Workflows  are  defined  declaratively  as  data  structures  (a
blueprint or  flow  definition)  rather  than  hard-coded  logic.  An  expert  (developer)  or  an
automated design tool  specifies  the sequence of  actions,  conditional  branches,  and allowed
operations in a machine-readable format. The workflow blueprint can be represented in JSON or
a similar structured schema, akin to how one might describe an API contract in OpenAPI. This
blueprint is essentially a directed graph or state machine: each node represents a step (action to
perform)  and  edges  define  transitions  to  the  next  step.  The  service’s  engine  interprets  the
blueprint to decide what to do at each step and where to go next. Crucially,  the LLM is  only
invoked within specific steps for bounded tasks – for example, to generate text or analyze data –
but  never to choose the next step in the state machine .  This ensures the flow’s path
remains under deterministic control of the blueprint.

Provenance and Auditability: Every action taken by the workflow (LLM call, API call, decision
branch,  etc.)  is  logged  and  traceable.  Because  the  sequence  is  predetermined  (except  for
conditional logic which is still explicitly defined), we can provide a complete audit trail of what
happened and why. This is critical in enterprise or safety-critical contexts where understanding
the decision process is required. The structured nature of the flows makes it easier to inspect
and verify correctness before execution, and to analyze outcomes after execution.

Limited LLM Scope (Safety): The use of LLMs within the workflow is intentionally constrained.
LLMs will  be used for  tasks  like  natural  language processing,  summarization,  translation,  or
analysis  –  not  for  making  control  decisions.  By  bounding  the  LLM’s  role,  we  avoid  the
unpredictability that comes if an LLM “agent” had free rein. Essentially, the LLM behaves as a
powerful  subroutine  under  supervision.  This  mitigates  risks  of  the  LLM  drifting  off-task  or
producing unintended actions. It also allows insertion of validation steps (for example, after an
LLM produces an output,  the next  step could validate that  output  against  rules or  schemas
before proceeding).

Budgets  and  Resource  Controls: Each  workflow  (and  even  each  actor  or  tool  within  the
workflow) can be assigned a  budget –  for  example,  a  limit  on the number of  API  calls,  the
number of tokens processed by an LLM, or a time limit. These budgets are integrated into the
flow logic. If a component exceeds its budget, the workflow can take a predefined path (such as
aborting or invoking a fallback step).  By designing budget constraints into the blueprint,  we
ensure  the  system cannot  accidentally  run away in  loops  or  incur  unbounded costs.  In  our
scenario, for instance, the Persona service or LLM might only have a certain token budget; if
translating or answering a question would exceed that, the flow would stop or switch to an error
state. This built-in guardrail is another measure to keep executions safe and predictable.

Flexible Complexity: The system is meant to handle simple to very complex workflows. A simple
use-case might be a single-step call (e.g. "call this LLM with prompt X and return answer"). A
complex use-case could involve multiple agents,  branching logic,  loops (controlled by explicit
conditions), and tool integrations. The design should support both extremes. This implies the
blueprint  language  must  be  expressive  enough  for  conditions,  branching  (if/else),  parallel
execution (if needed), and looping (perhaps via recursive flows or explicit loop constructs) – all
while  remaining  human-comprehensible.  The  service  should  execute  any  such  defined  flow
reliably, since each part is under strict governance of the blueprint.

Integration with Knowledge Graphs (Future Scope): Although not the first priority, the vision
includes leveraging semantic knowledge graphs in conjunction with the flow engine. The idea
is  that  the  workflow steps  and their  context  could  be informed by  a  knowledge graph that
contains relevant domain information or state. For example, a step might query a knowledge
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graph for facts that an LLM then uses in its prompt. Or the flow blueprint itself could be stored/
versioned as a graph of nodes (steps) and edges (transitions), enabling visualization and analysis
of the workflow structure. By combining flows with semantic knowledge representations, we can
achieve more powerful reasoning while still keeping the execution controlled. This is an area of
ongoing research and will be explored as the service evolves.

Service Architecture and Components

The  LLM  Workflows/Stateflow  Service architecture  is  composed  of  several  key  components  that
together enable the definition and execution of these workflows:

Workflow Definition (Blueprint): At the core is the workflow blueprint, a complete
specification of the states and transitions for a given process. This can be a JSON document or
Python object (defined via dataclasses or Pydantic models) that lists all the steps in order, along
with any branching logic. Each Step in the blueprint typically contains:
An action identifier – e.g. "call_LLM"  or "call_service:persona.translate"  – which
tells the engine what to do.
Parameters/input for that action – e.g. the prompt to send to the LLM, or the data to send to an
API. Parameters might include references to outputs of previous steps (for example, step 3 can
use the result produced by step 2).
Result handling info – e.g. where to store the result of this step (in a context object or variable
map that gets passed along).
Transitions – rules for what the next step is. In the simplest case, each step names a single next
step. In more complex cases, a step may have multiple possible next steps depending on its
result (for example, a branching step could say: if evaluation score >= 8 go to step X, else go to step
Y). If a step is terminal, it can be marked as an End state.
Optional metadata like timeouts or retries for that step, if an action might fail and should be
retried.

The  blueprint  is  analogous  to  a  workflow  script.  The  service  includes  a  Blueprint  Interpreter (or
engine)  which  reads  this  definition  and  drives  execution  accordingly.  Because  the  blueprint  is
declarative, we can inspect and validate it before running, and even visualize it as a flowchart.

Execution Engine: The engine is a stateless component that takes a workflow blueprint plus the
current state (inputs and context) and executes one step of the workflow. It can be implemented
as a FastAPI endpoint (for example, /execute_step ) which accepts a JSON payload containing
the workflow definition (or a reference to it), the current step to execute, and any necessary
input data or context. The engine performs the action of that step and returns the result (and
the identifier of the next step to execute, if any). Important responsibilities of the engine include:
Action Dispatch: Based on the step’s action identifier, call the appropriate function or external
service. For example, if the action is call_LLM , the engine will invoke the configured LLM API
(such as an OpenAI or Anthropic model) with the given prompt and parameters. If the action is 
persona.translate  or persona.respond , the engine calls the Persona service endpoint. If

it’s a generic HTTP API call, the engine will make that HTTP request (possibly the blueprint could
contain the URL or a reference to a pre-registered service with credentials).
Budget Checking: Before executing an action, the engine checks the remaining budget for that
actor/service. This could be implemented by maintaining a transient budget counter in the
context that tracks tokens or calls. For instance, if the Persona service has 100 tokens budget
and translating the message is estimated to use 30, the engine verifies budget >= 30, deducts it,
then proceeds. If budget would be exceeded, the engine can skip to a special termination or
error step defined in the blueprint.
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Result Handling: After performing the action, the engine takes the output and places it in the
workflow’s state (for example, storing it under a variable name). If the blueprint specifies post-
processing (like simple transformations) or validations (e.g. ensure the result fits an expected
format), those are done here as well.
Next Step Logic: The engine determines which state to execute next. In straightforward
sequences, the blueprint might indicate a next  step explicitly. If the current step was a
branching/choice step or if the action outcome dictates the path, the engine evaluates the
condition and picks the appropriate next step. For example, an evaluator step might branch to
different follow-up steps depending on the score (high score leads to a “successful completion”
branch, low score leads to an “escalation” branch). If there is no next step (the step was marked
as an end), the workflow is complete and the engine returns the final result of the workflow.

Notably, the engine is  agnostic to the overall workflow – it doesn’t keep a running memory of all
previous steps beyond what is carried in the input context. This makes it easy to scale or even to pause
and resume workflows by simply not calling the next step immediately. It is the responsibility of the
Orchestrator (described next) to drive the engine through the steps.

Workflow Orchestrator: Since the service executes one step at a time, we need an orchestrator
to manage multi-step workflows from start to finish. This could be a separate client application, a
calling service, or even a simple loop in a script that keeps invoking the engine until the workflow
ends. For example, suppose we have a workflow with steps A -> B -> C. The orchestrator would:
Call /execute_step  for step A with initial input. Receive result and next step = B.
Call /execute_step  for step B with result of A. Receive result and next step = C.
Call /execute_step  for step C with result of B. Receive result and next step = none (end).
Collect final result.

The orchestrator could be implemented as part of the client using this service, or we could provide a
utility in the service that takes a whole blueprint and automatically steps through it. However, having
the orchestrator outside the core engine adds flexibility: workflows can be paused, inspected mid-run,
or even modified between steps if needed (for advanced use cases).

In a serverless deployment (e.g., AWS Lambda via OSBot-FastAPI-Serverless), the orchestrator might be
a state machine service (like AWS Step Functions itself or Azure Durable Functions) that triggers the next
lambda invocation. Alternatively, a simple loop in an API endpoint (if using a container or persistent
service) could also orchestrate the steps synchronously.

Integrated Services and Tools: The workflow steps can involve various external services:
An LLM Service: e.g., an API call to an OpenAI or a local model. The flow can specify which model
and prompt to use. The LLM service endpoint would need to be reachable by the workflow
engine and secured (API keys, etc.). The service may have multiple models (GPT-4, GPT-3.5, etc.)
and the blueprint could choose which one by an identifier.
The Persona Service: (at persona.qa.mgraph.ai  as mentioned) which has two main
capabilities:

Persona Translation: take an input message and translate or rephrase it for a target
persona or in a target language (e.g., explain a technical incident in board-level terms, or
convert English to Portuguese, etc.).
Persona Response: given a prompt or question, respond as the persona (generating an
answer the persona would give). This service is itself likely powered by an LLM under the
hood, but from our workflow’s perspective it’s a black-box API that we call with certain
parameters. The workflow can include steps that call persona.translate  or 
persona.respond  with the appropriate persona and message.
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Evaluation Service: an AI or rule-based system that evaluates a given piece of content. In the
example scenario, this is used to rate how well a response was understood or how effective it
was. This could be another LLM prompt (e.g., asking an evaluator model to score the answer on
clarity), or a more deterministic function that checks for certain keywords, etc. We treat it as an
external call (perhaps another endpoint like evaluator.rate_response ).

Other  APIs/Tools:  The  system  could  integrate  with  any  HTTP  API  or  internal  function.  For
instance,  steps  could  call  a  database,  send  an  email,  trigger  a  CI/CD  pipeline,  run  a  shell
command (if allowed), etc. These would be included by defining new action types in the blueprint
and teaching the engine how to execute them. The design is extensible; new action handlers can
be added to the engine plugin-style.

Budget Manager: As mentioned, budgets for each actor/service must be enforced. A simple
implementation is to include budget counters in the workflow context passed through steps. For
example,  the  context  could  have  { "budget": {"persona": 1000, "llm": 1500,  

"evaluator": 500} }  indicating remaining token or API call counts. Each time the engine is
about to call one of these, it subtracts an estimated cost. If the cost is not known exactly (e.g.,
tokens to be consumed by an LLM call depends on output length), the engine can either make a
conservative guess or get the info after the call (some LLM APIs return token usage). If a budget
hits  zero or goes negative,  the engine can trigger a special  transition (for  example,  go to a
“Budget Exceeded” fail state). The blueprint can define what to do in that case (maybe notify the
user, or just terminate). The Budget Manager could be just a piece of logic in the engine or a
separate helper module.

Logging & Monitoring: Every  request  to  the  engine and every  action invocation should  be
logged.  This  includes  inputs,  outputs,  and  any  decision  points.  For  debugging  complex
workflows, it is invaluable to see a trace of steps. We can integrate this with the OSBot-FastAPI’s
event system (which already provides request/response tracking and can store events) . Logs
can be written to a database or a cloud logging service.  We might also have a  monitoring
dashboard that  shows  active  workflows,  their  progress,  and  any  errors.  For  long-running
workflows (if any), monitoring would show the current state and waiting transitions. Given the
stateless nature, most workflows will run quickly or be orchestrated externally, but monitoring is
still useful for analyzing results and performance. We will also capture metrics like time per step,
tokens used, etc., to help optimize the flows and LLM usage.

Security & Access Control: As an OWASP Security Bot project, security is important. The service
should authenticate and authorize requests (using API keys or tokens, as supported by OSBot-
FastAPI middleware ). Only authorized systems or users should be able to submit a workflow
for execution or call  the engine. Also, the actions allowed in a workflow might be gated: for
example, we might restrict certain flows from calling arbitrary URLs unless explicitly allowed, to
prevent misuse. Each integrated service (Persona, LLM, etc.) will have its own credentials (API
keys), which the engine must handle securely (likely stored in environment or a vault, not hard-
coded in the blueprint). The blueprint might reference a service by name and the engine knows
which credentials to apply.

In summary, the architecture separates the declaration of what to do (blueprint) from the execution of
how it’s done (engine and orchestrator), with clear interfaces to external AI services and strict control
logic enveloping any LLM calls. This design maximizes reliability and clarity, ensuring that even as we
automate complex tasks with AI, the process remains transparent and governable.
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Workflow Definition and Standards

Defining the workflow blueprint in a robust way is a critical aspect of this service. We want a format that
is  expressive,  standard-compliant  (when  possible),  and  easy  for  developers  to  author  and
maintain. Given that our implementation language is Python (with OSBot-FastAPI and OSBot-FastAPI-
Serverless frameworks), we have a couple of choices for how to represent workflows:

Python Type-Safe Classes (Code as Blueprint): We can create Python classes (using OSBot’s
Type_Safe or Pydantic models) to represent the elements of a workflow – e.g., a  Flow  class
containing  a  list  of  Step  objects,  where  each  Step  has  fields  like  id ,  action , 
parameters , transitions , etc. Developers can then construct these classes in code or load

them from a JSON. OSBot-FastAPI will automatically handle conversion between these classes
and JSON schemas . This means we get strong typing and validation for free. For example, if a
step is missing a required field or has an invalid next step reference, the model validation can
catch it before execution. This approach treats the blueprint almost like writing a program (in
Python), which is then serialized to JSON when needed.

JSON/YAML Workflow Schema (Data as Blueprint): Alternatively, we define a pure JSON (or
YAML)  schema  for  the  workflow  –  a  text-based  format  that  could  be  authored  by  hand  or
generated by tools. There are existing standards and schemas in the industry that we can draw
inspiration from:

BPMN 2.0: A long-standing standard for business process modeling (usually visual diagrams
stored in XML) . BPMN is very expressive (supports events, gateways, etc.), but it might be
overly complex for our needs and not JSON-friendly by default.
BPEL: An older XML-based language for web service orchestration . Also quite heavy and tied
to WS-* services.
AWS Step Functions (Amazon States Language): A JSON-based state machine definition used
in AWS Step Functions . This is a practical and widely used format. It represents workflows as
a set of states (Task, Choice, Parallel, etc.) with a StartAt  and explicit Next  transitions or 
Choice  branches. It’s quite suitable for our concept since it inherently models step-by-step

execution with choices. The downside is that it’s AWS-specific in some of its integration details,
but we could adopt the structure. For example, we’d have "Task" states for calling LLM or
Persona, and "Choice" states for branching on evaluation results, etc., all expressed in JSON.
Azure Logic Apps: Similar to Step Functions, uses JSON (and often designed via a visual editor)

. Also could be a reference, though tied to Azure connectors.
Workflow Description Languages (WDL/CWL): These are specialized languages for scientific
and data workflows . They emphasize reproducibility and usually model batch processing of
data (like DNA sequencing pipelines). They might be too domain-specific for our interactive use-
cases, but they show how to define steps, inputs, and outputs clearly.
Argo Workflows / Tekton: Kubernetes-native workflow engines using YAML . They often
focus on CI/CD pipelines and container tasks. The concept of defining DAGs of steps is similar,
though Argo’s YAML could be more low-level (each step is basically a container spec).
Custom DSLs: Many teams end up creating their own lightweight JSON/YAML schemas for
workflows . This is likely the approach we will take: design a JSON schema tailored to our AI
workflow needs, while borrowing ideas from the above standards for structure and best
practices. For instance, we might incorporate Step Function’s idea of states and transitions, but
simplify it, or include a field for natural language description like BPMN does, etc.

Given that we aim for a type-safe and easily maintainable solution, our plan is to define a JSON-based
schema for the workflow and also represent it with Python classes for convenience. We can start from
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scratch or use a nascent standard like FlowSpec. FlowSpec is an open initiative to create a standardized
JSON schema for AI automation workflows . It recognizes that many workflow tools share a flow-
chart backbone, and it attempts to unify this in a portable way. In FlowSpec, a workflow is defined by a
title, description, a list of steps, and transitions between steps . Each step has fields for what action
to execute, its inputs, expected outputs, and what the next step(s) are depending on outcomes. It even
allows global  default  transitions (like what  to do on any failure) .  FlowSpec also enumerates
existing workflow standards (as we did above) to validate the approach of a common schema .

After  researching  these  options,  our  recommendation is  to  adopt  a  JSON  state  machine  schema
inspired by AWS Step Functions and FlowSpec. This gives us a known structure (states, next, choice, etc.)
but we will customize it for our needs (for example, integrate the notion of budget and our specific
action types). We will keep the schema human-readable and not too verbose. For instance, a simple flow
with two steps might look like:

{

"workflowName": "Simple Q&A",

"startAt": "AskQuestion",

"states": {

"AskQuestion": {

"type": "Task",

"action": "call_LLM",

"parameters": {

"prompt": "Answer the user's question: {user_question}"

},

"resultVar": "answer",

"next": "EvaluateAnswer"

},

"EvaluateAnswer": {

"type": "Task",

"action": "evaluator.rate_response",

"parameters": {

"response": "{answer}"

},

"resultVar": "score",

"end": true

}

}

}

In this pseudo-JSON: - startAt  specifies the entry step. - We have two states: one calls an LLM to get
an answer,  the next  calls  an evaluator  to  score that  answer,  then ends.  -  We use placeholders  like
{user_question}  and {answer}  to indicate passing data between steps (the engine would replace

those at  runtime with  actual  values  from context).  -  This  format  is  quite  similar  to  Amazon States
Language (each state has a  Type  and either a  Next  or  End ) , but with an  action  field
that is our custom addition to specify what the Task does (since we are not tying directly into AWS
Lambda ARNs as AWS does ).

We will formalize such a schema and provide a JSON Schema definition for it (so it can be validated). The
use of Python with OSBot-FastAPI means we can also create corresponding classes. For example, a
TaskState  class and a  ChoiceState  class that inherit from a base  State  class, etc., enabling
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developers to construct workflows in Python fluidly. The OSBot-Fast-API toolkit will assist by ensuring
these classes convert to Pydantic models easily, preserving the strong types . This approach satisfies
our  need for  a  clear  contract  for  workflows,  while  leveraging existing best  practices  from industry
standards .

To summarize, the workflow definition will likely be expressed as JSON but with first-class support in
Python. It will incorporate ideas from state machine standards (like having explicit states, transitions,
start/end, etc.) and will be designed to be readable, easy to modify, and rigorous. By doing this, we
make it easier for developers to create new workflows or adjust existing ones, and possibly even enable
LLM-assisted workflow authoring in the future – for instance, an LLM could take a high-level description
and output a draft JSON workflow, which a developer then reviews and fine-tunes. The use of a standard
schema also opens the door to visualization tools or workflow editors down the line.

Example Workflow: Persona-Based Communication and
Evaluation

To illustrate  how the stateflow service  works,  let's  walk  through a  detailed example workflow.  This
scenario involves translating and conveying a critical message between two types of personas in an
organization, and evaluating the communication’s effectiveness. We will use the previously described
actors: - Actor A: The originator of the message (could be a human user or an automated alert). In our
scenario, the message is: "A ransomware attack has hit Division X, which will impact the P&L (profit and loss)
for this quarter." - Actor B: The Persona Service, which can assume different personas. We will use it in
two modes: - Translator mode: to rephrase a message for a target persona’s understanding. - Responder
mode: to generate a reply as if coming from a persona. - Actor C: The Evaluator service, which will judge
the quality of responses (e.g., does the response answer the question clearly, does the target persona
understand the message, etc.).

The organizational context is that  Board Members care about financial terms like P&L but might not
understand  technical  cybersecurity  jargon,  whereas  CISOs  (Chief  Information  Security  Officers)
understand ransomware  but  might  not  grasp  business  impact  jargon.  Our  message contains  both
technical  (ransomware)  and  financial  (P&L)  terms,  so  it’s  challenging  for  either  persona  to  fully
understand without translation.

We will construct a workflow that explores different communication paths:

1. Direct Communication to CISO (No Translation):
Actor A sends the original message directly to a CISO persona (via Actor B’s responder mode acting as a
CISO). The flow steps might be: - Step 1: persona.respond  as CISO with input = "Ransomware attack
on Division X will impact P&L this quarter."
→  (Actor B generates a response as it  thinks a CISO would reply.  This CISO likely understands the
ransomware part but may be confused or less concerned about P&L specifics. The response might say
something  focusing  on  cybersecurity  mitigation  but  not  address  financial  impact  fully.)  -  Step  2:
evaluator.rate_response  on  the  CISO’s  reply,  with  criteria  like  completeness,  clarity, 

appropriateness for the question.
→ (Actor C returns a score or feedback. We expect this might be a mediocre score if the CISO persona
missed the financial aspect.) - Step 3: End. (We record the score and perhaps the content of the CISO’s
answer.)

Expected outcome: The CISO’s answer might mention technical  steps (e.g.,  “We are investigating the
ransomware attack on Division X and working to contain it.”) but not translate that into business terms.

3
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The evaluator might note that the board (who cares about P&L) would not get a full picture from this
answer. The score could be low or moderate.

2. Direct Communication to Board Member (No Translation):
Actor  A  sends the same message directly  to  a  Board Member persona (Actor  B  acting as  a  board
member): - Step 1: persona.respond  as BoardMember with input = "Ransomware attack on Division
X will impact P&L this quarter."
→ (Actor B generates a response a board member might give. The board member persona might latch
onto the P&L impact but be unsure about the technical details, possibly responding with something like
“How  severe  is  the  ransomware  attack  and  what  are  the  projected  losses?”)  -  Step  2:
evaluator.rate_response  on the Board Member’s reply.

→  (We expect the board member’s answer might not be directly useful because the board persona
might actually ask questions or express confusion about the ransomware aspect. The evaluator likely
scores this low in terms of addressing the problem, since the board member persona didn’t provide a
solution or clear action.) - End.

This path shows how a mismatched communication (technical message to non-technical persona) might
fail.  The  board  member  didn’t  provide  a  satisfying  answer  because  they  themselves  didn’t  fully
understand the technical side. The evaluator would likely flag that the communication was ineffective.

3. Translated Communication to CISO:
Now we improve the communication. Actor A’s original message will first be translated to the CISO’s
"language" (i.e., reframed in cybersecurity terms), then delivered to the CISO persona, and evaluated: -
Step  1: persona.translate  target=CISO,  input  =  "Ransomware  attack  on  Division  X  will  impact
P&L..."
→ (Actor B returns a translated message that a CISO would immediately grasp. For instance, it might
elaborate the technical threat and downplay financial jargon:  “Division X has been hit by ransomware,
affecting  operations;  this  could  have  a  significant  business  impact  this  quarter.”)  -  Step  2:
persona.respond  as CISO with input = translated message from Step 1.

→ (Now, receiving a message phrased in his context, the CISO persona can respond more appropriately.
The answer might be like:  “Understood. We have isolated the affected systems and are initiating incident
response. We estimate recovery in 48 hours. Financial impact is being assessed in collaboration with finance.”
This is a more complete answer covering both tech and acknowledging financial impact, because the
question was framed in terms the CISO cares about.) -  Step 3: evaluator.rate_response  on the
CISO’s new reply.
→ (Actor C would likely give a higher score here, since the response is clear, addresses the issue, and
bridges to business impact. The evaluator might note that the communication was effective for the
target audience.) - End.

We expect this translated workflow to yield a good outcome: the CISO persona understood the question
after translation and responded in a way that likely satisfies a board or oversight evaluator.

4. Translated Communication to Board Member:
Similarly,  translate  the  message  for  a  Board  Member,  then  get  a  response:  -  Step  1:
persona.translate  target=BoardMember, input = original message.

→ (This might produce something like: “We estimate a hit to this quarter’s profits due to a cyber incident
(ransomware in Division X).” Essentially explaining ransomware impact in terms a board cares about,
possibly  avoiding  jargon.)  -  Step  2: persona.respond  as  BoardMember with  input  =  translated
message.
→  (Now the board persona, fully  aware of the financial  framing, might respond appropriately,  e.g.:
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“Understood.  Ensure  all  necessary  resources  are  allocated  to  IT  to  resolve  this  quickly.  Let’s  prepare  a
statement for stakeholders about the financial impact.”) -  Step 3: evaluator.rate_response  on this
reply.
→ (Likely another high score – the board member persona’s answer is on point when the question was
phrased in their terms.) - End.

This shows that with proper translation, even a non-technical persona can engage effectively.

5. Back-and-Forth Dialogue (CISO ⟷ Board, Mediated by Translations):
We can extend the scenario to simulate an interactive dialogue between the CISO and Board Member
personas. The idea is to have multiple turns: - First, the CISO receives a translated question (as in #3)
and responds as CISO. - Then take the CISO’s response, translate it for the Board, get a Board persona
reply.  -  Then  translate  that  reply  back  to  CISO’s  terms,  get  CISO’s  next  response.  -  Continue  this
exchange for a few iterations or until a budget limit is reached (to prevent infinite loops).

In the workflow blueprint, this could be represented by a loop or recursive transitions. For example: -
Step  1:  persona.translate  to  CISO  (original  message)  ->  output  ciso_msg.  -  Step  2:
persona.respond  as CISO (ciso_msg) -> output ciso_reply. - Step 3: persona.translate  to Board

(ciso_reply)  ->  output  board_msg.  -  Step  4:  persona.respond  as  Board  (board_msg)  ->  output
board_reply. - Step 5: Loop condition: If board_reply  or some context indicates conversation should
continue AND budgets remain, go back to Step 1 (or a specific step) with board_reply  now serving as
the "original message" (Actor A’s input) for the next round, targeting CISO again. - If loop ends (either a
set number of rounds reached or budget exhausted), proceed to evaluation or finalization: - Step 6:
evaluator.rate_response  on the final response or on the overall dialogue quality. - End.

This looping construct is explicitly controlled. The blueprint would contain a Choice or condition check
after Step 4 to decide whether to loop or exit. The budget for each persona ensures that, say, we don’t
allow more than N exchanges or Y tokens. For instance, we might give each persona service 3 calls
budget.  Each  persona.respond  call  uses  1.  So  at  most  3  rounds of  responses  per  persona can
happen (which is 3 CISO replies and 3 Board replies, for a total of 3 cycles) before the budget prevents
further calls.

During this back-and-forth, each translation ensures both parties understand each other’s messages in
their own context. The Evaluator at the end might evaluate the overall success of the communication.
Perhaps it looks at the final outcome: did they reach a mutual understanding or plan? We could even
have the evaluator step after each reply, storing intermediate scores, but in practice it might suffice to
evaluate at the end or only log the conversation.

This complex example demonstrates the power of the workflow approach: - We can coordinate multiple
AI  calls  (translations,  persona  responses,  evaluations)  in  a  sequence  that  achieves  a  larger  goal
(effective communication). - Because it’s all in a defined flow, we avoid chaos: e.g., the Board and CISO
personas will not talk over each other or go off on tangents; they only respond when prompted by the
workflow. - If something fails (say one of the steps returns an error or empty response), we could have
failure paths defined. For example, if  persona.respond  fails due to no available LLM, the blueprint
could go to a step that sends a default apology message or logs the failure. - The budget prevents
infinite loops or runaway costs, which is something ad-hoc agent loops might suffer from.

In summary,  this Persona Communication workflow shows a realistic  use-case where  deterministic
orchestration  of  LLM-powered  services adds  significant  value.  It  ensures  that  two  different
knowledge domains (technical vs business) can interact via AI intermediaries in a structured manner.
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The  stateflow service makes it  feasible to design such an interaction as a series of  controlled steps,
rather than leaving the entire conversation flow to an unpredictable AI agent. Each step’s outcome is
evaluated and can trigger specific next steps, which is exactly the kind of fine-grained control we need
for enterprise applications.

Additional Workflow Examples

Beyond the persona translation scenario, the LLM Workflows service can support a wide range of other
workflows. Here are a few example use-cases to demonstrate its versatility:

Simple LLM Q&A Workflow: ("Single-step answer") – The user provides a query, and the workflow
simply calls an LLM to get an answer and returns it. This is essentially a one-step workflow (plus
maybe an evaluator or format step). While trivial, it shows how even a simple LLM invocation can
be wrapped in the workflow for consistency (logging, budgeting, etc.). For instance, a question-
answering  bot  could  be  just  a  workflow  with  one  Task:  call_LLM  (with  a  certain  prompt
structure) and then End.

Knowledge Base Retrieval and Answering: ("Tool-augmented query") – A workflow can integrate
a search or database lookup before calling the LLM. Steps might be: (1) take a user question, (2)
use a custom action  call_web_search  or  query_knowledge_graph  to retrieve relevant
info, (3) feed the results into an call_LLM  step that formulates an answer using those results,
(4)  maybe  an  evaluator  step  to  check  confidence  or  filter  out  any  disallowed  content.  This
deterministic  sequence  ensures  the  LLM’s  answer  is  grounded in  retrieved data  (addressing
factuality), and each part is controlled (for example, if the search returns nothing, we could have
a conditional branch to skip the LLM call and respond with “no data found”).

Automated Code Assistant Workflow: – Consider a developer asking for code assistance. The
workflow could involve multiple specialized steps: (1) call_LLM  with a "planner" prompt that
breaks down the request (e.g., “write a function to do X”) into tasks, (2) loop through sub-tasks
where for each task we call either a coding LLM to generate code or a testing tool to verify the
code, (3) integrate results, (4) evaluate final code. For example, the first LLM might produce a
pseudocode or list of steps, the workflow then calls a code-generation model to implement each
step,  then  calls  a  compilation  or  test  action  to  check  it,  if  a  test  fails  perhaps  branch  to  a
debugging LLM step, etc. Using a workflow ensures each step (planning, coding, testing, fixing)
is done in order and under budget. This is much safer than an autonomous coding agent that
might go into an infinite loop or execute code unsafely – our workflow can explicitly restrict what
happens (like only allow running tests in a sandbox, etc.).

Content Moderation Pipeline: – An enterprise might use a workflow to filter and respond to
user-generated  content.  For  example:  (1)  moderation_model  step  (could  be  an  LLM or  a
dedicated model) to classify a piece of text (is it hate speech, spam, etc.?), (2) a choice  state
that branches: if content is OK, proceed to next step, if not OK, go to a rejection message step or
escalation,  (3)  maybe an  auto-response  step that  uses  an LLM to draft  a  polite  reply  or
explanation, (4) an approve  step where either automatically send the reply or require a human
approval (this could be an integration point where the workflow pauses until a human intervenes
– possible by having the orchestrator not call the next step until a signal). This kind of workflow
could automate moderation while keeping humans in the loop for tough cases, all defined by
policy in the blueprint.

• 

• 

• 

• 
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Incident  Response  Workflow: –  In  a  cybersecurity  context  (relevant  to  OWASP),  imagine  a
workflow triggered by a security alert. Steps could be: (1) parse the alert details (maybe using
regex or an LLM to summarize), (2) choice  to categorize severity, (3) if severe, call a script or
API  to  isolate  affected  systems,  (4)  call  LLM to  draft  a  notification  email  to  the  IT  team or
management, (5) log the incident to a database. Each of these is a deterministic step. The LLM is
used in a constrained way (only to generate the email text), while decisions like "if severe then
isolate systems" are hard-coded in the flow logic (not left to the AI). This ensures that important
actions  (like  isolating  systems)  happen exactly  when they  should  according  to  a  predefined
protocol, but we still benefit from AI in parsing and communicating information.

Multi-Language Customer Support: – A customer writes in with a query in language X. The
workflow:  (1)  detect  language  (maybe  a  small  model  or  library  call),  (2)  if  not  English,
translate  to English via an LLM or translation API,  (3)  use an LLM to draft  an answer in

English, referencing a support knowledge base if needed, (4) translate the answer back to the
customer’s language, (5) send the reply via an API. This workflow uses two LLM calls (one to
answer, and possibly the same or another to translate) and ensures the final answer is in the
customer’s  language.  By orchestrating it,  we can ensure translation happens both ways and
include fallback steps (if  translation fails,  perhaps route to a human agent).  It’s  a  controlled
agent that can autonomously handle many support tickets in multiple languages without ever
deviating from the defined process.

These examples scratch the surface. Essentially, any time we want an LLM or AI-driven process with
multiple steps and we care about controlling those steps, this service can help. It provides the skeleton
to plug in various AI and non-AI functions into a flowchart of actions. 

By  keeping  the  workflows  declarative and  using  this  service,  organizations  can  codify  complex
procedures that involve AI  into a form that’s  transparent,  testable,  and tunable.  Need to change the
persona or the prompt? Just update the blueprint. Want to add a step to log to a new database? Add it
to the blueprint. Because the execution is isolated per step, these modifications won’t affect other steps’
correctness.  This  modularity  and  clarity  is  much  harder  to  achieve  if  one  tries  to  hard-code  logic
intermingled with LLM prompts in a single blob. Our service enforces good separation of concerns.

Implementation Considerations (Python & OSBot Framework)

The  service  will  be  implemented  in  Python 3.11+ (per  OSBot-Fast-API  requirements )  using  the
OSBot-Fast-API library  and  its  serverless  extension.  Here  we  outline  how  we  leverage  these
technologies and other implementation details:

OSBot-Fast-API for Type Safety: OSBot-Fast-API  provides a strong type-safe layer on top of
FastAPI . We will define the data models for our workflow blueprint (and related requests/
responses)  as  classes  using  OSBot’s  Type_Safe  or  Pydantic.  This  ensures  that  when  a
workflow JSON is received, it’s automatically validated against our schema. It also makes it easy
to return structured responses. For instance, the /execute_step  endpoint can be defined to
accept a WorkflowStepExecutionRequest  object (containing the blueprint or reference and
current  step  data)  and  return  a  WorkflowStepResult  object.  OSBot-Fast-API  will  handle
converting those to JSON for us, and we can be confident in the structure. Strong typing will
catch mistakes early – e.g., if a transition refers to a step that doesn’t exist, we can detect that
when loading the workflow.

• 
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Serverless Deployment: OSBot-Fast-API-Serverless enables deploying the FastAPI app to AWS
Lambda easily. Our service, being stateless and lightweight in memory (each step execution is
quick), is a good candidate for serverless. We could deploy the entire service as a Lambda behind
an API Gateway. Each step execution call would be a separate invocation (which is fine given
statelessness). The benefits: scaling automatically with load and zero server maintenance. We do
need to be mindful of cold start times (Python Lambdas can have a few seconds cold start; using
smaller models or warming mechanisms might be considered if needed). Also, token-based LLM
calls can be slow (hundreds of milliseconds to seconds), but those are external API waits; the
Lambda timeout should be set sufficiently high to allow an LLM call to complete (perhaps 30
seconds  or  more  for  large  prompts).  For  now,  we  focus  on  functionality,  and  we  have  the
flexibility to also run the service in a container or on a VM if needed (FastAPI is versatile).

Integration of LLM APIs: We will integrate with LLM providers via their Python SDKs or HTTP
APIs. Likely, OpenAI’s API (for GPT-4 or others) will be used initially (assuming we have keys).
Calls to these will happen inside the engine’s action dispatch. We must handle errors (network
issues, rate limits) gracefully – possibly by catching exceptions and either retrying (with backoff)
or  moving  to  a  failure  state.  We  should  also  use  streaming  responses  only  if  necessary;
otherwise synchronous calls returning the full output are simpler. For local LLMs or alternative
providers, we can abstract the LLM call behind a common interface so that switching out is easy
(for example, have a LLMService  class with a method generate(model, prompt)  that can
call OpenAI, or HuggingFace pipeline, etc., based on configuration).

Testing  Workflows: Because  of  the  deterministic  nature,  we  can  unit  test  workflows  by
simulating the orchestrator. For a given blueprint, we can run the engine step by step and assert
the final outcome or intermediate states. We can also create dummy action handlers for tests
(e.g., instead of calling the real LLM API, use a stub that returns a fixed string or uses a local
small  model).  This  way,  we  can  verify  logic  (like  branching)  without  external  dependencies.
OSBot-Fast-API’s testing utilities (like the built-in test server ) will help in writing these tests.
Each workflow example can have an automated test case that ensures it runs to completion and
yields expected evaluator scores, etc., which is important for continuous integration.

Performance and Caching: Calling LLMs is the slowest part. We might implement caching at the
step level. For example, if the same persona.translate  is called with the exact same input
frequently, we could cache the result to avoid redundant API calls. This could be done in-memory
(for a single lambda invocation sequence) or even persisted (like a small Redis or DynamoDB
cache keyed by input). However, caching needs to be designed carefully (e.g., LLM outputs might
not be identical every time unless using deterministic prompts). Perhaps more straightforward is
to avoid duplicate calls in the same workflow execution – since a single workflow might reuse a
result anyway via variables.

Choosing Standards Libraries: For state machine logic within Python, we might use or draw
inspiration from libraries like  transitions  (a  Python state machine library)  or others,  but
given our custom requirements, we will likely implement the transition handling ourselves. The
logic is not too complex given a proper data structure for the blueprint.

Error Handling and Recovery: If a step errors out (throws an exception, or returns a response
indicating failure), the engine should catch that and either:

Move to a predefined error state if the blueprint defined one (like how AWS Step Functions has a 
Catch  mechanism).
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Or return an error back to the orchestrator. Since orchestrator is external, it's probably better to
handle it within the workflow. We can allow steps to have a on_error: <stepId>  field. This
way, e.g., if an LLM call fails, we go to a specific step (maybe an apology message, or a cleanup).
If no on_error is specified, the engine can return an error code and the whole workflow aborts.
This aspect should be defined in our schema for completeness.

Logging the error is important regardless, for debugging.

Collaboration  and  Iteration: As  development  proceeds,  the  team  (human  developers)  will
refine the blueprint schema and engine logic, often with the assistance of LLMs for ideas or
troubleshooting. This synergy will continue as we implement new features. For instance, if we
want to introduce a new kind of step (say, a Parallel step to do two things concurrently),  we
might  consult  resources  or  have  an  LLM suggest  how to  implement  thread  pools  or  async
patterns in FastAPI. However, all changes will be reviewed and tested by developers to ensure
they meet the determinism and security criteria.

Documentation and Accessibility: We will  document  the  schema and usage of  the  service
thoroughly (potentially even auto-generating part of the docs from the schema, similar to how
OpenAPI does for APIs). Since Dinis Cruz and the team are building this in the open (likely on
GitHub),  the  documentation  will  credit  the  contributions  of  both  the  developers  and  the  AI
(ChatGPT) that helped along the way. This technical brief itself can serve as a living document to
guide implementation, and as we integrate feedback and real-world testing, the design may be
adjusted.  The flexibility  of  our  approach (thanks to  Python and JSON)  means we can iterate
quickly.

In conclusion, the LLM Workflows/Stateflow Service is a cutting-edge approach to making LLM-based
systems more robust,  transparent, and controllable. By blending established workflow orchestration
concepts with the latest AI capabilities, and implementing it with modern Python frameworks, we aim to
create a service that developers and AI systems can collaboratively use and improve. It will empower
the creation of AI-driven applications that have the creativity of LLMs  and the reliability of traditional
software – a combination that is  increasingly essential  in high-stakes applications .  With this
foundation, we anticipate a new class of solutions where humans specify the roadmap (workflow) and AI
fills in the details (content), all under a structure that ensures safety and effectiveness. 

Blueprint First, Model Second: A Framework for Deterministic LLM Workflow
https://arxiv.org/html/2508.02721v1

LangGraph vs AutoGen: How are These LLM Workflow Orchestration Platforms Different? - ZenML
Blog
https://www.zenml.io/blog/langgraph-vs-autogen

osbot-fast-api · PyPI
https://pypi.org/project/osbot-fast-api/

GitHub - woodyhayday/FlowSpec: FlowSpec: Automation Workflow
Schema - A lightweight JSON schema for defining automations and multi-step workflows. Designed for
AI Automation Workflows
https://github.com/woodyhayday/FlowSpec

Amazon States Language
https://states-language.net/
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