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Problem and Architecture Overview

Phone-based social engineering and vishing (voice phishing) attacks are on the rise, targeting

customer support and help desk agents. Attackers impersonate customers or executives to

manipulate agents into divulging sensitive information or performing unauthorized actions

(password resets, fund transfers, etc.). With AI-driven voice cloning, fraudsters can even mimic a

victim's voice to fool biometric checks or bypass security questions by social engineering the

agent[1]. The business impact is severe -- breached accounts, financial loss, compliance violations

-- and detecting these threats during a call is extremely challenging. Human agents may miss

subtle cues of manipulation, especially if the caller is persuasive or the attack blends into normal

support workflows.

The technical challenge is to analyze voice conversations on-the-fly for signs of phishing or

manipulation. This means turning an audio stream into structured data (transcripts, sentiment,

detected intents) that security systems can evaluate. A straightforward approach is to treat each

support call as an input to a pipeline of detection stages. The pipeline would transcribe the audio,

analyze linguistic content and vocal tone for urgency or stress, extract semantic information (e.g.

what requests are being made, what account or device is discussed), and then apply logic to decide

if the call is suspicious. If a threat is likely, the system should generate a security event (e.g. alert in

the Security Information and Event Management system, SIEM) so the incident can be investigated

or action can be taken (like warning the agent or supervisor).

Real-time vs "fast enough" detection: Importantly, this pipeline does not need to operate in true

real-time (i.e. within milliseconds). Unlike a network firewall, we don't necessarily have to stop the

conversation mid-sentence. The goal is to be fast enough -- ideally analyzing the call within

seconds to a minute -- so that if a high-risk social engineering attempt is detected, we can

intervene before the attacker's goal is achieved. For example, if the caller is trying to convince the

agent to reset a password or reveal an OTP (one-time passcode), detecting the threat just in time

could prompt a supervisor to intervene or require additional verification. In essence, as long as the

system flags the call before a fraudulent transaction completes, it's effectively real-time for

security purposes.

https://www.tsys.com/insights/2024/10/22/new-voice-fraud-cloning-techniques-expose-a-vulnerability-of-call-centers#:~:text=Call%20center%20fraud%20is%20when,into%20giving%20them%20customer%20information


Architectural Workflow

At a high level, Project Voice2SIEM proposes a pipeline with multiple stages, each transforming the

raw audio into more refined signals (see Figure 1). By the end, the system has enough

understanding of the conversation to decide if it warrants a security alert. The stages include:

1. Audio Input Capture: The customer support call (which may be telephone audio or VoIP) is

recorded or streamed into the system. This could be a real-time audio feed from the telephony

system or a recording saved after the call.

2. Speech-to-Text Transcription: The raw audio is converted to text using Automatic Speech

Recognition (ASR). This produces a transcript of the call with timestamps and speaker

identification (who said what). Accurate transcription is crucial since all further analysis relies

on the textual content.

3. Urgency, Tone, and Emotion Detection: Beyond the words spoken, the system analyzes how

things are said. It looks at indicators of stress or emotion in the audio (e.g. elevated volume or

pitch, rapid speech suggesting urgency, or pauses suggesting hesitation). In the transcript, this

can be supplemented by sentiment analysis -- e.g. detecting if the customer is angry, anxious,

or insistent[2]. A manipulative caller might sound either unusually pushy or feign distress;

these vocal features provide early clues.

4. Semantic Extraction of Content: In parallel with tone analysis, the transcript is parsed for

topics, intents, and requests being made. For example, the system extracts what the caller is

asking for ("reset my password", "update my email", "check a charge on my account"), any

mention of sensitive information (account numbers, one-time passcodes), and entities like

names or organizations. Natural Language Processing (NLP) techniques identify key entities

and the overall intent of the call. The system might also detect conversation acts (caller

provided authentication info, agent verified identity, caller requested an exception to policy,

etc.).

5. Conversation Graph Generation: All the extracted data -- semantic facts, entities, the dialog

sequence, emotional indicators -- are aggregated into a graph representation of the

conversation. In this graph, nodes might represent the participants (customer, agent), the

utterances (individual statements or questions), and important entities (like an account or

ticket number). Edges can illustrate the flow of the conversation ("agent asks for verification

after customer request") or relationships ("caller identity provided matches account name").

The graph format makes it easier to see the overall structure of the interaction and to apply

pattern-matching for known attack scenarios.

6. Scoring and Decision for SIEM Escalation: Finally, a decision engine evaluates the graph and

all collected signals to produce a threat score. This could be a simple rules engine or a

machine-learning model trained on past call data. It considers factors like: Did the caller exhibit

high stress or urgency while requesting a sensitive action? Were there anomalies in

authentication (e.g. multiple failed attempts, or the caller bypassing questions)? Does the

sequence of events match known fraud playbooks (such as the "CEO impersonation" scam)? If

the score exceeds a threshold or certain red flags are present, the system generates a security

event that is sent to the SIEM. This event would contain the pertinent details (timestamp, call

https://aws.amazon.com/transcribe/call-analytics/#:~:text=With%20Amazon%20Transcribe%20Call%20Analytics%2C,the%20issue%20was%20addressed%2C%20and


ID, transcript highlights, reason for alert) so security analysts or automated responders can

take action.

Figure 1: Conceptual Voice2SIEM pipeline converting a support call into a security alert. The process

begins with audio input from a customer-agent conversation. The audio is transcribed to text, then

analyzed for emotional tone (e.g. urgency, anger) and semantic content (topics, intents, requests).

These insights feed into a conversation graph representing the flow of the call. Finally, a scoring logic

decides if the graph indicates a likely social engineering attack, triggering a SIEM event.

This architecture acknowledges that no single signal is conclusive. A caller might be angry for

legitimate reasons, or mention sensitive info as part of normal troubleshooting. It's the

combination of signals and the context that reveals a social engineering attempt. For example, an

attacker might start very friendly (low anger, positive sentiment) then suddenly create urgency ("I

need this done immediately or I'll get you fired!") -- a stark sentiment change coupled with a policy

exception request. The conversation graph for such a call would show an abnormal sequence

(from small talk to threats) that differs from genuine customer calls. By breaking down the audio

and analyzing these aspects step by step, the system can catch what a human agent alone might

miss.

Solution Using Commodity Cloud Services (AWS Reference

Implementation)

Designing and implementing the above pipeline from scratch can be complex. Fortunately, modern

cloud providers offer building blocks that can be assembled to create this voice-to-SIEM analysis

system. To demonstrate, we outline a reference solution using Amazon Web Services (AWS)

serverless components (note that similar services exist on Azure and Google Cloud, so the

approach is portable). The emphasis is on using managed, pay-per-use services to achieve this

inexpensively at scale. We don't need to maintain servers or deep ML expertise -- we can leverage

cloud AI APIs that are readily available[3].

Key AWS components in the pipeline:

Audio Ingestion (S3 + Lambda): A call recording (for post-call analysis) or a live audio stream

is fed into the pipeline. In AWS, one simple method is to use Amazon S3 as an ingestion point:

the call system saves the audio file (e.g. MP3/WAV) to an S3 bucket at the end of the call. This

event triggers an AWS Lambda function (via S3 event notification) to start processing. For live

calls, AWS Kinesis Streams or Amazon Chime SDK can stream audio in real-time, but for our

"fast enough" approach a short post-call delay is acceptable. The Lambda retrieves the audio

from S3 and initiates transcription.

Speech-to-Text with Amazon Transcribe: The Lambda function uses Amazon Transcribe to

convert the audio to text. Amazon Transcribe can operate in batch mode (transcribing a file

from S3 asynchronously) or streaming mode (transcribing a live stream in real-time). In our

reference design, the Lambda could call the Transcribe API to start a transcription job on the

audio file. The result will be a transcript file (JSON or TXT) -- possibly stored back in S3 or

https://github.com/aws-samples/amazon-transcribe-live-call-analytics#:~:text=Amazon%20machine%20learning%20services%20like,You%20figure%20that


returned to the Lambda after completion. Transcribe can provide word-by-word timestamps

and distinguish between speakers (important for identifying "who said what" in the dialogue).

Tone and Sentiment Analysis with Comprehend: Once the transcript is ready (within seconds

for an average call), another Lambda step (or the same Lambda if orchestrated sequentially)

analyzes the text. Amazon Comprehend, a natural language AI service, can detect sentiment

(positive, negative, neutral, mixed) of text and extract key phrases. Comprehend's sentiment

analysis helps determine if the caller was angry, frustrated, or urgent during the call. This can

be done at the overall call level and even per sentence to see if sentiment shifted over time.

Additionally, Comprehend can perform entity recognition -- identifying names, dates,

organizations mentioned -- which could flag if the caller mentioned things like a specific bank,

a password, an account number, etc. These become pieces of metadata attached to the call

record.

Intent and Keyword Extraction: While Comprehend covers basic NLP, AWS offers other tools

for deeper insight. Amazon Transcribe itself has a feature called Call Analytics that can directly

identify call categories and issues, like spotting if certain phrases (e.g. "not happy", "speak to

manager") occurred[4]. Alternatively, one could use Amazon Lex, a conversational AI service, to

parse the transcript or even actively listen during the call to identify intents. For example, Lex

could be configured with intents such as "PasswordResetIntent", "VerifyIdentityIntent",

"AccountUnlockIntent" etc., and the transcript (or live audio via Lex integration) would reveal if

the caller's requests match any of these. The combination of Comprehend and Lex can thus

provide a structured view of what the caller was trying to achieve. AWS's own blog notes that

using services like Transcribe with Comprehend and Lex enables capturing both insights and

intents from conversations[3].

Orchestration and Data Flow: All the above steps can be orchestrated with AWS Lambda

functions passing data through Amazon S3 or in-memory. A simple approach is a pipeline of

Lambdas triggered in sequence: audio file lands in S3 -> triggers Transcription Lambda ->

writes transcript to S3 -> triggers Analysis Lambda -> which calls Comprehend/Lex -> outputs

findings to a results database. AWS Step Functions (a serverless workflow service) could also

manage this multi-step pipeline with error handling and retries built-in. Each service in the

pipeline is pay-per-use: you pay only for the seconds of Lambda execution, the seconds of

transcription, and the Comprehend API calls used, making it cost-efficient.

Graph and Pattern Analysis: In an AWS-only implementation, we might not explicitly build a

graph database for the conversation (since that introduces a stateful component). However,

we can simulate the graph analysis through structured data and search indices. For example,

after analysis we could construct a JSON object that represents the conversation structure

(speakers, sequence of intents, sentiment timeline, entities mentioned). This JSON could be

indexed in Amazon OpenSearch (the AWS-hosted Elasticsearch service) to enable complex

queries and visualization. OpenSearch can serve as a lightweight SIEM database where all call

transcripts and alert scores are stored. Analysts could search this index for patterns (like all

calls where a password reset was requested and caller sentiment was angry). If needed,

Amazon Neptune (a managed graph DB) could be used to store the conversation graph and run

graph queries -- but that adds complexity, so our reference keeps it simple with JSON data and

OpenSearch.

https://aws.amazon.com/transcribe/call-analytics/#:~:text=customer%20and%20agent%20sentiment%2C%20call,names%2C%20addresses%2C%20and%20credit%20card
https://github.com/aws-samples/amazon-transcribe-live-call-analytics#:~:text=Amazon%20machine%20learning%20services%20like,You%20figure%20that


Scoring and SIEM Alerting: The final step is deciding if a particular call is malicious. This logic

can run in a Lambda function once all analysis data is available. The Lambda might use a set

of rules (e.g., IF caller_sentiment = "angry" AND requested_action = "password_reset" AND

auth_failed = true THEN high_risk) to compute a risk score. More advanced, it could use a

machine learning model (perhaps SageMaker or even a Comprehend custom classifier trained

on examples of fraudulent vs. normal calls). But clear, explainable rules are a good starting

point. If the call is deemed suspicious, the system creates a security event record. In AWS, this

could be an entry sent to Amazon EventBridge, which can route the event to various targets: an

SNS notification to Security Engineers, a ticket in an incident management system, or even

automatically calling an AWS Lambda to disable the customer's account until verified.

Alternatively, the Lambda could index an "alert" document into the OpenSearch index with a

field like alert=true  so it shows up in SIEM dashboards. The key is that a tangible alert or log

is generated and integrated with whatever SIEM or logging solution the company uses (could

be Splunk, Elastic, Datadog, etc., via webhooks or connectors).

Modularity and Cloud Portability: All components here are loosely coupled. Audio files and

transcripts reside in S3 (or could be any object store), triggers are event-driven, and each

analysis piece is a replaceable module. For instance, if one wanted to switch to Google Cloud,

you could use Cloud Storage instead of S3, Google's Speech-to-Text instead of Transcribe, and

Cloud NLP for sentiment/intent instead of Comprehend/Lex. The pipeline concept remains the

same. Because it's serverless, scaling to thousands of calls is simply a matter of AWS handling

more Lambda invocations and more parallel transcribe jobs -- no infrastructure bottlenecks.

Cost-wise, using these services means you pay per call-minute processed, which for sporadic

or moderate call volumes is extremely cost-effective compared to hiring a team of human

monitors.

Data Pipeline Example (AWS): Below is a summary of how data flows in this serverless design:

1. Ingestion: Agent software or telephony records the call audio and uploads call123.mp3  to S3.

2. Transcription Trigger: S3 event kicks off Lambda "TranscribeCall". It calls Amazon Transcribe

to transcribe the audio file (language can be auto-detected if needed). Transcribe outputs

call123-transcript.json  to an S3 transcripts/  folder.

3. Analysis Trigger: The upload of the transcript JSON triggers Lambda "AnalyzeCall". This

function loads the transcript (could also get it from the Transcribe API result) and calls

Amazon Comprehend for sentiment and entities. It may also invoke Amazon Lex (or a custom

intent classifier) with the transcript to get recognized intents (e.g. intent: ResetPassword ).

The function compiles an analysis result JSON with fields like sentiment_trend ,

key_phrases , detected_intent , caller_tone , auth_attempts , etc. It saves this to S3 or

sends it directly to the next step.

4. Scoring & Alert: A final Lambda "ScoreCall" (triggered by the presence of analysis results)

evaluates all inputs. It might say: sentiment went from neutral to highly negative when agent

asked security question, caller requested high-risk action, caller provided account info after failing

initial verification. These factors are tallied into a risk score (say 85/100). If above threshold

(e.g. 80), the Lambda sends an event to EventBridge with details ( alert: true, risk:85,



call_id:123, reason:"high urgency password reset" ). EventBridge forwards it to the

security notification topic and also logs it into OpenSearch. If the score is low, the call record

might just be logged in OpenSearch with alert: false, risk:10  for learning/tracking.

5. SIEM Integration: In our case, Amazon OpenSearch acts as a simple SIEM data store where all

calls and alerts reside. Security teams can query and visualize this (e.g. see trends, or get an

alert feed). If the organization has an existing SIEM (Splunk, QRadar, etc.), the EventBridge rule

could instead call a webhook or use a connector Lambda to forward the event to that system in

real-time.

Through this AWS solution, we achieve a functional voice-to-SIEM pipeline using off-the-shelf

services. We leveraged Transcribe for speech-to-text, Comprehend for NLP insights, and simple

logic in Lambda for the decision -- demonstrating that even complex-sounding capabilities like

emotion detection or intent recognition are accessible via APIs[3]. All data (audio, text, results) is

centralized in S3/OpenSearch which provides an audit trail. Moreover, the serverless architecture

means we can handle bursts of calls or scale down to zero when no calls are happening, paying

only for actual usage. This cloud reference implementation proves the concept: organizations can

start detecting social engineering in calls today, without waiting for a specialized vendor product,

by composing existing cloud services.

Open Source and Semantic Graph-Based Implementation

While cloud services are convenient, some organizations prefer open-source, self-hosted solutions

-- for flexibility, transparency, and avoiding vendor lock-in. Furthermore, to push the envelope, we

can design a system that not only detects threats but does so in a fully explainable, graph-driven

manner, aligning with cutting-edge semantic analysis techniques. In this section, we present an

open-source blueprint using Dinis Cruz's stack of tools and frameworks, which are geared towards

building type-safe, graph-centric, and auditable AI systems. The goal is to show how the

Voice2SIEM pipeline can be constructed with open technologies, yielding a high degree of control

and introspection into how decisions are made.

The open-source solution will use the following key components:

Cache Service (FastAPI-based) -- for structured storage of audio, transcriptions, metadata, and

event outputs.

MGraph-DB (Memory Graph Database) -- for building and querying the semantic graph of each

conversation.

Type_Safe Schema System -- to define all data models (call records, transcript segments,

analysis results, alerts) with strict types, ensuring consistency and traceability across the

pipeline.

MyFeeds.ai LETS Pipeline -- an architectural pattern (Load-Extract-Transform-Save) that guides

the data flow in deterministic, debuggable steps.

Persona Modeling and Scoring -- a layer that infers the "persona" or likely intent of the caller

(legitimate customer vs. potential fraudster) and scores threat likelihood based on how the

https://github.com/aws-samples/amazon-transcribe-live-call-analytics#:~:text=Amazon%20machine%20learning%20services%20like,You%20figure%20that


conversation aligns with known patterns.

Let's discuss each in the context of Voice2SIEM:

Cache Service for Data Ingestion and Storage: The Cache Service is a lightweight, fast key-value

store accessible via API (built with FastAPI and OSBot-FastAPI extensions). We use it as the glue

between pipeline stages. For example, when a call audio is received, it can be stored as a binary

blob in the Cache (under some unique key like call/123/audio ). When the transcription step runs

(as a microservice or job), it pulls the audio from Cache, produces a transcript object, and saves

that back to the Cache (e.g. under call/123/transcript ). Similarly, analysis stages store their

outputs (tone analysis, intent extraction results, etc.) in the Cache with versioning. The Cache

Service essentially provides a central state repository so that each stage of the pipeline is

decoupled (they communicate by reading/writing data via the Cache API). Because it's backed by a

fast datastore and supports JSON natively, it's ideal for persisting the conversation data at each

step. This also means every intermediate artifact is saved -- enabling replay, auditing, and

debugging. If an alert is raised on a call, we have the full chain of data (audio -> transcript -> graph -

> score) stored for forensic analysis or model improvement.

Transcription and Analysis (Open-Source Tools): For transcription, one could use an open-source

ASR engine. A leading choice is OpenAI Whisper (which has a high-accuracy model that can run on-

premise GPUs or even on CPU for smaller models). There are also others like Kaldi or Vosk. In our

blueprint, we'll assume using Whisper for speech-to-text, integrated into the pipeline as a service

(perhaps a container that the Cache Service can call, or an offline batch process that writes results

to Cache). For text analysis (sentiment, intent), we can leverage open-source NLP libraries or

models: for sentiment, models from HuggingFace (e.g. a RoBERTa sentiment classifier) can be

used; for keyword/entity extraction, spaCy or transformers can identify entities; for intent, one

might train a simple classifier or use an LLM with prompts. The persona modeling can even utilize

a large language model in a controlled way: for instance, use an LLM to parse the transcript and fill

in a structured "CallAnalysis" JSON schema with fields like suspected_attack_vector ,

caller_persona , important_entities . By defining the schema and validating it (with Type_Safe

classes), we ensure the LLM's output is structured and can be parsed deterministically (a technique

proven in Dinis's MyFeeds.ai project, where LLMs populate predefined JSON schemas)[5]. Each of

these analysis steps writes its JSON results to the Cache. This approach means even if we use

advanced AI (LLM) for analysis, we capture its reasoning in data form, rather than a black-box

judgment.

MGraph-DB for Semantic Graph Construction: Once the transcript and initial analyses are done, we

consolidate the information into a semantic graph using MGraph-DB. MGraph-DB is an in-memory

graph database optimized for JSON and Python usage[6]. We create nodes for key elements of the

call: e.g. a node for the Caller, a node for the Agent, nodes for each Utterance (with properties like

timestamp, sentiment, speaker), nodes for important Entities (like Account or PIN Code if they were

mentioned), and perhaps nodes for Intents or Requests (like ResetPasswordAction). Then we add

edges to connect these: Caller --(speaks)→ Utterance1; Utterance1 --(intent)→ ResetPasswordAction;

Utterance2 --(sentiment)→ Angry; Caller --(provides)→ AccountNumberEntity, etc. The exact schema

of the graph can evolve, but the idea is to create a rich representation that can be traversed to

answer questions like "Did the caller provide credentials?" or "How did the agent respond after the

https://github.com/DinisCruz/docs.diniscruz.ai/blob/6e0e278d80d0ea5cdb125f998590a3b2b248021d/docs/2025/05/27/lets__load-extract-transform-save__a-deterministic-and-debuggable-data-pipeline_architecture.md#L8-L16
https://pypi.org/project/mgraph-db/#:~:text=MGraph,suited%20for


caller got angry?". MGraph-DB, being type-safe and in-memory, allows us to quickly build and query

this graph within a Python service. Its type-safe nature ensures we only create valid node/edge

types as defined in our schema (catching mistakes early)[7][8]. We can also serialize this graph to

JSON for storage or debugging, since MGraph-DB supports JSON persistence.

Type_Safe Schemas and Data Models: All data entities in this pipeline are defined as classes using

the Type_Safe system (from OSBot). For example, we might define class

Transcript(Type_Safe): ...  with fields for call_id, full_text, segments, etc., or class

Utterance(Type_Safe): speaker, text, timestamp, sentiment . By using Type_Safe, we get

runtime-checked, self-documenting data structures that can seamlessly convert to/from JSON[8].

This means when we pass data between services (or even within the graph DB), we do so in a

structured manner. It also aids transparency: each piece of data can be logged or inspected with

confidence in its format. The Type_Safe schema definitions essentially act as the contract for each

pipeline stage's input/output. Moreover, this system helps with auditability: for instance, a

SecurityAlert  class might require certain fields (e.g. reason, score, timestamp, evidence graph

reference), ensuring no alert is created without sufficient data. Sharing these schema classes

between the pipeline components (the Cache service, the analysis code, the graph builder, etc.)

guarantees consistency -- similar to how the client-server model in OSBot shares schemas to have

a single source of truth[8].

LETS Pipeline Orchestration: We adopt the LETS (Load-Extract-Transform-Save) architecture to

manage the pipeline execution in clear steps[9][10]. Here's how it maps to Voice2SIEM: - Load:

Bring in the raw data (audio file) and save it unmodified. In practice, when a call audio arrives, we

"load" it by storing it in the Cache (this is analogous to saving the raw RSS feed in MyFeeds.ai's

pipeline[11]). This ensures the exact original audio is preserved. - Extract: Derive initial structured

data from the raw input. This would be the transcription step (audio -> text) and perhaps parsing

the text into structured dialogues. The transcript (with speaker turns) is saved as a JSON in the

Cache. We might also extract other low-level info, like a timeline of who spoke when, or a list of

detected keywords. The key is this stage is about structuring the raw audio into data we can work

with (similar to how MyFeeds extracted article JSON from raw RSS)[12]. - Transform: Perform

higher-level transformations to enrich the data with semantics and insights. In our case, several

sub-stages of Transform happen: sentiment analysis, intent detection, building the conversation

graph, and scoring the risk. Each of these can be its own Transform step that takes the output of

Extract or a previous transform and produces a new artifact. For example, "Transform 1" might take

the Transcript and produce a SentimentTimeline object (list of utterances with sentiment tags).

"Transform 2" might take Transcript + SentimentTimeline and produce the ConversationGraph

(using MGraph-DB). "Transform 3" might take the ConversationGraph and produce a

ThreatHypothesis (which encapsulates the potential attack vectors identified, e.g. "caller

impersonating CEO scenario"). Each of these transforms saves its output to the Cache (and could

be an API call or microservice in the implementation). By chaining multiple fine-grained

transformations, we make the system easier to debug and extend[5]. Crucially, we persist after

each transform, so intermediate data is always available for inspection. If the final decision seems

wrong, we can go back to see, for example, what the conversation graph looked like or what the

sentiment analysis found, to pinpoint which stage misinterpreted the data. - Save: In LETS, every

stage saves its output, but finally we also save the final results to their destination. In this context,

https://pypi.org/project/mgraph-db/#:~:text=
https://github.com/owasp-sbot/OSBot-Fast-API/blob/f3bc57390c988d6cce2d9bd5e16d9618beb00868/docs/dev/briefs/v0.26.1__developing-fastapi-service-clients.md#L41-L48
https://github.com/owasp-sbot/OSBot-Fast-API/blob/f3bc57390c988d6cce2d9bd5e16d9618beb00868/docs/dev/briefs/v0.26.1__developing-fastapi-service-clients.md#L41-L48
https://github.com/owasp-sbot/OSBot-Fast-API/blob/f3bc57390c988d6cce2d9bd5e16d9618beb00868/docs/dev/briefs/v0.26.1__developing-fastapi-service-clients.md#L41-L48
https://github.com/DinisCruz/docs.diniscruz.ai/blob/6e0e278d80d0ea5cdb125f998590a3b2b248021d/docs/2025/05/27/lets__load-extract-transform-save__a-deterministic-and-debuggable-data-pipeline_architecture.md#L18-L26
https://github.com/DinisCruz/docs.diniscruz.ai/blob/6e0e278d80d0ea5cdb125f998590a3b2b248021d/docs/2025/05/27/lets__load-extract-transform-save__a-deterministic-and-debuggable-data-pipeline_architecture.md#L32-L35
https://github.com/DinisCruz/docs.diniscruz.ai/blob/6e0e278d80d0ea5cdb125f998590a3b2b248021d/docs/2025/05/27/lets__load-extract-transform-save__a-deterministic-and-debuggable-data-pipeline_architecture.md#L40-L45
https://github.com/DinisCruz/docs.diniscruz.ai/blob/6e0e278d80d0ea5cdb125f998590a3b2b248021d/docs/2025/05/27/lets__load-extract-transform-save__a-deterministic-and-debuggable-data-pipeline_architecture.md#L26-L34
https://github.com/DinisCruz/docs.diniscruz.ai/blob/6e0e278d80d0ea5cdb125f998590a3b2b248021d/docs/2025/05/27/lets__load-extract-transform-save__a-deterministic-and-debuggable-data-pipeline_architecture.md#L8-L16


the ultimate "save" is to log the security event (if any) and related data in a permanent store. The

Cache service could serve in this capacity (it might append the alert to an "alerts" collection in its

storage). Or we might output it to a SIEM system or even just a JSON file repository. The Save step

here emphasizes versioning and traceability: we label the final outputs with version IDs and

timestamps. If six months later we want to audit why a certain call was flagged, we can retrieve the

exact data versions that led to it. This strong provenance tracking is a core benefit of the LETS

approach[13] -- every decision can be traced back through the pipeline with records of each

intermediate state.

Using LETS in this pipeline means the solution is fully reproducible and debuggable. If an error is

found in our analysis logic, we can re-run that step on the saved inputs to test a fix. It also means

we can gradually improve each stage (swap out a model, fine-tune a rule) and have confidence how

it impacts the end result, since we can replay past calls through the pipeline offline if needed.

Persona Modeling and Threat Scoring: One of the powerful ideas we introduce is modeling the

personas involved in the call -- especially the caller, who could be genuine or malicious. Over time,

the system can build profiles of legitimate customer behavior versus known attacker tactics. For

instance, a legitimate customer might answer verification questions slowly but correctly, exhibit

frustration after repeated problems, but will comply with security checks. In contrast, an attacker

persona might either act overly authoritative ("I'm in a huge hurry, I'm the CTO, just reset my

password now") or overly distressed ("I've been locked out and this is an emergency, please help, I

can't answer all these questions!"). By creating a library of these persona archetypes (which could

be informed by real fraud cases), the system can compare a live call's features to the personas. The

persona modeling system (inspired by MyFeeds.ai's approach of creating persona interest

graphs[12]) could represent each archetype as a set of expected behaviors or markers. For

example, an "Impersonator Executive" persona might have markers like: high authority tone,

expresses urgency, drops names of company executives, attempts to bypass normal process. A

"Distraught User" persona might: sound panicked, mention personal crises, push the agent to bend

rules out of sympathy. These can be encoded in a data structure (even as a graph or just a profile

object).

During the Transform stage, we take the conversation data and try to match it against these

persona profiles. This could be done with rules or possibly an ML model that classifies the call into

one of several personas. If a strong match to a malicious persona is found, that heavily influences

the threat score. It's not a binary thing -- we might see partial matches to multiple personas -- so the

scoring system can weigh various factors. For example: caller matched 80% of "Impersonator

Executive" traits + caller requested password reset (a high-risk action) + call came from an unusual

phone number (metadata anomaly) -- combine these to yield a, say, 95/100 risk score, clearly over

the threshold.

Graph-Based Detection of Patterns: Because we have the conversation as a graph in MGraph-DB,

we can also directly apply graph algorithms or queries to spot suspicious patterns. For example, we

could query for a subgraph where: a Caller node is connected to an Account node via a provided

credential edge, but the Agent node is connected to a Verification step that failed. This pattern

(caller provided some info, failed verification, but is still pushing) could be indicative of fraud.

Another pattern: the time between Caller's request and Agent's action is very short because the
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caller pressured the agent (could be calculated via timestamps in the graph). Or a sequence

pattern: Caller asks innocuous question -> builds rapport -> then asks for a sensitive action. In the

graph, that might appear as three utterances where the first has neutral intent, second is small talk,

third is high-risk intent; the presence of that sequence can be automatically flagged by traversing

the graph or by converting the conversation into a sequence of intent labels and running it through

a sequence pattern matcher. We can even search across calls: if the same caller (or same voice

print, if we did voice analysis) appears in multiple incidents, the graph of their interactions across

calls could expose a fraud campaign.

Examples of Detectable Social Engineering Signs: To illustrate, here are a few scenarios and how

our system would catch them: - Sequence Pattern: An attacker often follows a script. For instance,

"Friendly introduction" -> "Problem statement" -> "Urgent request with flattery/threat". A normal call

might not have such a scripted progression. Our semantic extraction would label each segment

(greeting, verification, request, etc.), and the conversation graph would show an abnormal transition

from a casual chat to a critical demand. If our rules know this pattern (perhaps from past

examples), the system flags it. For example, "caller suddenly transitioned from calm to urgent while

requesting a policy exception" could be a rule derived from sequence analysis. - Stress Indicators:

Suppose the caller's voice analysis shows elevated stress or anger whenever security protocols

are mentioned (like the agent asking to verify identity causes the caller to raise their voice or heart

rate if that could be measured). The sentiment timeline might show spikes of negative sentiment

aligned with those moments. This is a red flag -- a genuine user might be annoyed at verification

but wouldn't typically become aggressive; an attacker often does when impeded. The system would

note high emotional variance correlated with security steps as a risk indicator. - Anomalous

Metadata: Beyond content, contextual metadata can be telling. If the call came in at 3 AM local time

from an overseas IP (for VoIP) or the phone number isn't one normally associated with the

customer's account, those could be captured in the data model. Perhaps the account's profile says

typical call time is daytime and this is highly out of pattern. Or the caller claims to be in one city but

the telephony data suggests otherwise. Our pipeline can ingest such metadata at Load time (if

available) and attach it to the graph (e.g. a node for "CallOrigin" with attributes). Any anomaly here

(especially in combination with suspicious dialog) increases the score.

After all these analyses, the open-source system arrives at a ThreatLikelihood score for the call,

along with an explanation of why. Thanks to the structured approach, this explanation can be very

specific: e.g. "Alert: 95% likely social engineering. Detected persona: Impersonating Executive.

Evidence: Caller insisted on urgent action (ResetPassword) with high anger (sentiment -0.85) after

failing verification twice; call origin UK London, but user account holder is in USA; sequence matched

known fraud pattern #3." This kind of rich explanation is what a graph-based and type-safe pipeline

can provide. It's transparent and auditable, unlike a monolithic "AI black box" solution. Every piece

of that explanation links to an artifact in our system (transcript, sentiment value, graph pattern,

metadata record). The security team can drill down to confirm each fact (because the data is in the

Cache/graph) -- building trust in the system's verdict. In fact, the intermediate outputs themselves

can be used for auditor training or improving processes (maybe the company discovers certain

verification steps often cause false alarms, and they adjust policy).



Finally, the open-source pipeline would emit the event just like the cloud one -- perhaps writing an

entry to the Cache's event store or sending a message to a SIEM connector. The major difference is

that with open components, the organization can own the solution end-to-end: data stays on their

servers, models can be customized, and the logic can be adapted to their unique needs or

expanded (for example, integrating a voice biometric check if available, or linking to a database of

known fraud caller IDs). All core components (Cache Service, MGraph-DB, OSBot Type_Safe, etc.)

are open-source (Apache 2.0 or similar licenses) developed by Dinis Cruz and community, meaning

there's no license cost and one can contribute improvements. MGraph-DB's design for high-

performance in-memory operation ensures even complex graph queries or large calls can be

handled efficiently[6]. The Type_Safe framework makes sure our system's APIs and data are robust

and error-checked at development time, reducing runtime surprises[8].

Conclusion and Call to Action

Project Voice2SIEM demonstrates that turning customer support conversations into actionable

security intelligence is not only possible -- it's achievable today with open technology and a bit of

integration work. By combining voice-to-text, AI-driven analysis, and graph-based correlations, we

can shine a light on what has traditionally been a blind spot in security monitoring (the content of

phone calls). Importantly, the approach we presented emphasizes trust, transparency, and

auditability. Every decision the system makes is backed by data artifacts and clear rules, so

security teams can trust the alerts and verify why an alert was raised by tracing through the stored

intermediate states[13]. This is in stark contrast to opaque "AI magic" solutions; here, we're

effectively opening the black box and making it a glass box.

We also made a point to ensure the system respects the practical constraints of real call centers: it

doesn't disrupt the live call flow, it works in near real-time, and it produces alerts quickly enough to

matter. Whether implemented with cloud serverless components or a fully open-source stack, the

blueprint is modular and flexible. Companies can start small -- maybe begin by just transcribing

calls and doing sentiment analysis as a pilot -- and gradually build up the full pipeline as confidence

grows. Because each piece is replaceable, improvements in AI (say a better speech recognition

model or a new NLP technique) can be plugged in without redesigning the whole system.

The authors (Dinis Cruz and the ChatGPT Deep Research team) are releasing this as an open

blueprint with no commercial agenda -- our intent is purely to advance the state of the art in

security monitoring and inspire others to build upon it. All the mentioned open-source tools (Cache

Service, MGraph-DB, OSBot Type_Safe, etc.) are available in open repositories, and we invite

readers to explore them, contribute, or adapt them to their own projects. We believe this kind of

system would be incredibly valuable if deployed broadly: imagine a world where every help desk

call or IT support call is quietly analyzed for potential fraud, providing a safety net for human

agents who might be socially engineered. Many high-profile breaches could have been mitigated or

even prevented if such technology were in place to catch the tell-tale signs of a con artist on the

phone.

Call to Action: If you find this project intriguing, consider contributing to its development or trying it

out in your environment. You could start by using AWS's AI services to get quick wins on call
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analysis, or if you're more experimentally minded, deploy the open-source components and run

some recorded calls through it to see what insights surface. Share your findings, build custom

persona profiles that fit your industry, and help refine the detection logic. Since this is an open

effort, improvements by one can benefit many. Ultimately, securing the "human layer" of support

interactions is a shared challenge -- let's collaboratively turn the tide against voice-based social

engineering. Voice2SIEM can be a community-driven shield, and we welcome you to join us in

building it. Together, we can make customer support channels safer through transparency, open

tech, and a healthy dose of innovation.
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